Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Journal of Plant Nutrition and Soil Science, April 2016, Vol.179(2), pp.129-135
    Description: Phosphorus is one of the major limiting factors of primary productivity in terrestrial ecosystems and, thus, the P demand of plants might be among the most important drivers of soil and ecosystem development. The P cycling in forest ecosystems seems an ideal example to illustrate the concept of ecosystem nutrition. Ecosystem nutrition combines and extents the traditional concepts of nutrient cycling and ecosystem ecology. The major extension is to consider also the loading and unloading of nutrient cycles and the impact of nutrient acquiring and recycling processes on overall ecosystem properties. Ecosystem nutrition aims to integrate nutrient related aspects at different scales and in different ecosystem compartments including all processes, interactions and feedbacks associated with the nutrition of an ecosystem. We review numerous previous studies dealing with P nutrition from this ecosystem nutrition perspective. The available information contributes to the description of basic ecosystem characteristics such as emergence, hierarchy, and robustness. In result, we were able to refine Odum's hypothesis on P nutrition strategies along ecosystem succession to substrate related ecosystem nutrition and development. We hypothesize that at sites rich in mineral‐bound P, plant and microbial communities tend to introduce P from primary minerals into the biogeochemical P cycle (acquiring systems), and hence the tightness of the P cycle is of minor relevance for ecosystem functioning. In contrast, tight P recycling is a crucial emergent property of forest ecosystems established at sites poor in mineral bound P (recycling systems). We conclude that the integration of knowledge on nutrient cycling, soil science, and ecosystem ecology into holistic ecosystem nutrition will provide an entirely new view on soil–plant–microbe interactions.
    Keywords: Ecosystem Properties ; P Recycling ; P Nutrition Strategy ; Forest Nutrition ; P Acquiring
    ISSN: 1436-8730
    E-ISSN: 1522-2624
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Journal of Plant Nutrition and Soil Science, December 2018, Vol.181(6), pp.894-904
    Description: Sonication is widely used for disruption of suspended soil aggregates. Calorimetric calibration allows for determining sonication power and applied energy as a measure for aggregate disrupting forces. Yet other properties of sonication devices (., oscillation frequency and amplitude, sonotrode diameter) as well as procedure details (soil‐to‐water ratio, size, shape, and volume of used containers) may influence the extent of aggregate disruption in addition to the applied energy. In this study, we tested potential bias in aggregate disruption when different devices or procedures are used in laboratory routines. In nine laboratories, three reference soil samples were sonicated at 30 J mL and 400 J mL. Aggregate disruption was estimated based on particle size distribution before and after sonication. Size distribution was obtained by standardized submerged sieving for particle size classes 2000–200 and 200–63 µm, and by dynamic imaging for particles 45 W). Thus, these sonication device properties need to be listed when reporting on sonication‐based soil aggregate disruption. The overall small differences in the degree of disruption of soil aggregates between different laboratories demonstrate that sonication with the energies tested (30 and 400 J mL) provides replicable results despite the variations regarding procedures and equipment.
    Keywords: Disaggregation ; Particle Size Fractions ; Reproducibility ; Round‐Robin Test ; Ultrasound
    ISSN: 1436-8730
    E-ISSN: 1522-2624
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Journal of Plant Nutrition and Soil Science, August 2016, Vol.179(4), pp.425-438
    Description: Understanding and quantification of phosphorus (P) fluxes are key requirements for predictions of future forest ecosystems changes as well as for transferring lessons learned from natural ecosystems to croplands and plantations. This review summarizes and evaluates the recent knowledge on mechanisms, magnitude, and relevance by which dissolved and colloidal inorganic and organic P forms can be translocated within or exported from forest ecosystems. Attention is paid to hydrological pathways of P losses at the soil profile and landscape scales, and the subsequent influence of P on aquatic ecosystems. New (unpublished) data from the German Priority Program 1685 “” were added to provide up‐to‐date flux‐based information. Nitrogen (N) additions increase the release of water‐transportable P forms. Most P found in percolates and pore waters belongs to the so‐called dissolved organic P (DOP) fractions, rich in orthophosphate‐monoesters and also containing some orthophosphate‐diesters. Total solution P concentrations range from ca. 1 to 400 µg P L, with large variations among forest stands. Recent sophisticated analyses revealed that large portions of the DOP in forest stream water can comprise natural nanoparticles and fine colloids which under extreme conditions may account for 40–100% of the P losses. Their translocation within preferential flow passes may be rapid, mediated by storm events. The potential total P loss through leaching into subsoils and with streams was found to be less than 50 mg P m a, suggesting effects on ecosystems at centennial to millennium scale. All current data are based on selected snapshots only. Quantitative measurements of P fluxes in temperate forest systems are nearly absent in the literature, probably due to main research focus on the C and N cycles. Therefore, we lack complete ecosystem‐based assessments of dissolved and colloidal P fluxes within and from temperate forest systems.
    Keywords: Forest Ecosystem ; Phosphorus ; Fluxes ; Soil ; Processes ; Hydrology
    ISSN: 1436-8730
    E-ISSN: 1522-2624
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages