Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Journal of Plant Nutrition and Soil Science, April 2016, Vol.179(2), pp.129-135
    Description: Phosphorus is one of the major limiting factors of primary productivity in terrestrial ecosystems and, thus, the P demand of plants might be among the most important drivers of soil and ecosystem development. The P cycling in forest ecosystems seems an ideal example to illustrate the concept of ecosystem nutrition. Ecosystem nutrition combines and extents the traditional concepts of nutrient cycling and ecosystem ecology. The major extension is to consider also the loading and unloading of nutrient cycles and the impact of nutrient acquiring and recycling processes on overall ecosystem properties. Ecosystem nutrition aims to integrate nutrient related aspects at different scales and in different ecosystem compartments including all processes, interactions and feedbacks associated with the nutrition of an ecosystem. We review numerous previous studies dealing with P nutrition from this ecosystem nutrition perspective. The available information contributes to the description of basic ecosystem characteristics such as emergence, hierarchy, and robustness. In result, we were able to refine Odum's hypothesis on P nutrition strategies along ecosystem succession to substrate related ecosystem nutrition and development. We hypothesize that at sites rich in mineral‐bound P, plant and microbial communities tend to introduce P from primary minerals into the biogeochemical P cycle (acquiring systems), and hence the tightness of the P cycle is of minor relevance for ecosystem functioning. In contrast, tight P recycling is a crucial emergent property of forest ecosystems established at sites poor in mineral bound P (recycling systems). We conclude that the integration of knowledge on nutrient cycling, soil science, and ecosystem ecology into holistic ecosystem nutrition will provide an entirely new view on soil–plant–microbe interactions.
    Keywords: Ecosystem Properties ; P Recycling ; P Nutrition Strategy ; Forest Nutrition ; P Acquiring
    ISSN: 1436-8730
    E-ISSN: 1522-2624
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Journal of Plant Nutrition and Soil Science, August 2016, Vol.179(4), pp.472-480
    Description: Among several environmental factors shaping soil microbial communities the impact of soil nutrients is of special interest. While continuous application mainly of N and P dramatically shifts community composition during fertilization, it remains unclear whether this effect is consistent in generic, unfertilized beech forest ecosystems of Germany, where differences in nutrient contents are mostly a result of the parental material and climatic conditions. We postulate that in such ecosystems nutrient effects are less pronounced due to the possibility of the soil microbiome to adapt to the corresponding conditions over decades and the vegetation acts as the major driver. To test this hypothesis, we investigated the bacterial community composition in five different German beech dominated forest soils, representing a natural gradient of total‐ and easily available mineral‐P. A community fingerprinting approach was performed using terminal‐Restriction Fragment Length Polymorphism analysis of the 16S rRNA gene, while abundance of bacteria was measured applying quantitative real‐time PCR. Bacterial communities at the five forest sites were distinctly separated, with strongest differences between the end‐members of the P‐gradient. However the majority of identified microbial groups (43%) were present at all sites, forming a core microbiome independent from the differences in soil chemical properties. Especially in the P‐deficient soil the abundance of unique bacterial groups was highly increased, indicating a special adaption of the community to P limitation at this site. In this regard Correspondence Analysis elucidated that exclusively soil pH significantly affected community composition at the investigated sites. In contrast soil C, N and P contents did mainly affect the overall abundance of bacteria.
    Keywords: Core Microbiome ; Forest Soil ; Nutrient Content ; Diversity
    ISSN: 1436-8730
    E-ISSN: 1522-2624
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages