Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • English  (5)
  • AGRIS (United Nations, Food and Agriculture Organization)  (5)
  • Soil Science Society Of America Journal  (5)
  • 1
    Language: English
    In: Soil Science Society of America Journal, Sept-Oct, 2006, Vol.70(5), p.1731(10)
    Description: Uronates are important constituents of maize mucilage and polyuronates are used as a simplified model of the soil--root interface. We tested whether galacturonate (GA) and polygalacturonate (PGA) impair the diffusion of phosphate (P[O.sub.4]) into and out of pores of a synthetic goethite (147 [m.sup.2] [g.sup.-1]) and whether the effect of maize mucigel (MU) is comparable to PGA. We measured the P[O.sub.4] desorption kinetics of goethites in batch experiments over 2 wk at pH 5. One part of the goethite was equilibrated with organic substances before P[O.sub.4] addition, another part after addition of P[O.sub.4]. Before the desorption experiments, the porosity of our samples was analyzed by [N.sub.2] gas adsorption. In each treatment a rapid initial desorption was followed by a slow desorption reaction, which is assigned to the diffusion of P[O.sub.4] out of mineral pores. No consistent relation between the micro- and mesoporosity and the rate of the slow P[O.sub.4] desorption was observed. Compared with the C-free control, only PGA and MU affected the fraction of P[O.sub.4] mobilized by the fast and slow desorption reaction: when PGA was sorbed to goethite before P[O.sub.4], twice as much P[O.sub.4] was mobilized via the fast reaction than in the treatment where P[O.sub.4] was sorbed before PGA, suggesting a decreased accessibility of goethite pores to P[O.sub.4]. Mucigel, however, showed reversed effects, which is ascribed to its differing chemical composition. In conclusion, PGA seems inappropriate as a model substance for maize MU collected from non-axenic sand cultures. Under the experimental conditions chosen, the efficacy of all organic substances to increase P[O.sub.4] solution concentrations by pore clogging and sorption competition is small.
    Keywords: Phosphates -- Research ; Sorption -- Research
    ISSN: 0361-5995
    E-ISSN: 14350661
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Soil Science Society of America Journal, March-April, 2006, Vol.70(2), p.541(9)
    Description: Biogenetic polysugars may affect the sorption characteristics of soil mineral particles in the rhizosphere. We hypothesized that polygalacturonate [PGA, ([[C.sub.6][H.sub.7][O.sub.6]).sub.n.sup.-]] coatings on goethite reduce the diffusion of phosphate into the pores of the adsorbent. Goethite was preloaded with PGA (0-10 mg C [g.sup.-1]). The samples were characterized by [N.sub.2] and C[O.sub.2] adsorption, electrophoretic mobility measurements, and scanning electron microscopy/energy dispersive X-ray analysis (SEM-EDX). The phosphate sorption kinetics was studied with batch experiments over 2 wk at pH 5 and an initial phosphate concentration of 250 [micro]M. Pore volume and specific surface area of the goethite samples declined after PGA addition. The PGA coatings reduced the [zeta]-potential of goethite from 42.3 to -39.6 mV at the highest C loading. With increasing PGA-C content and decreasing [zeta]-potential the amount of phosphate sorbed after 2 wk decreased linearly (P 〈 0.001). Sorption of phosphate to pure and PGA-coated goethite showed an initial fast sorption followed by a slow sorption reaction. At the smallest C loading (5.5 mg C [g.sup.-1]) the portion of phosphate retained by the slow reaction was smaller than for the treatment without any PGA, while at higher C loadings the fraction of slowly immobilized phosphate increased. Our results suggest that at low C-loadings PGA impaired the intraparticle diffusion of phosphate. In contrast, the slow step-by-step desorption of PGA (〈52% within 2 wk) or the diffusion of phosphate through PGA coatings or both are rate limiting for the slow phosphate reaction at C loadings 〉 5.5 mg C [g.sup.-1].
    Keywords: Soil Phosphorus -- Research ; Soil Chemistry -- Research ; X-ray Analysis
    ISSN: 0361-5995
    E-ISSN: 14350661
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Soil Science Society of America Journal, Nov-Dec, 2004, Vol.68(6), p.1853(10)
    Description: Recent [N.sub.2] adsorption studies have suggested a 'pore clogging' effect on mineral soil phases caused by organic matter coatings. For methodological reasons, this pore clogging effect has been studied only after drying. Our hypothesis was that pore clogging is affected by drying of organic coatings. In our study, we used AlOOH, which has been equilibrated with dissolved organic matter (DOM) and polygalacturonic acid [[PGA; [([C.sub.6][H.sub.8][O.sub.6]).sup.n]]. To test our hypothesis, we determined the porosity of moist and freeze-dried AlOOH samples. Freeze-dried samples were analyzed by [N.sub.2] adsorption, moist samples by [sup.1]H-nuclear magnetic resonance (NMR). In addition, the samples were characterized by environmental scanning electron microscopy--energy dispersive x-ray spectroscopy (ESEM-EDX). Both, DOM and PGA significantly reduced specific surface area (SS[A.sub.BET]) of AlOOH by 34 [m.sup.2][g.sup.-1](15%) and 77 [m.sup.2] [g.sup.-1] (36%). The reduction in SS[A.sub.BET] normalized to the amount of C sorbed was 1.0 [m.sup.2] [mg.sup.-1] DOM-C and 5.9 [m.sup.2] [mg.sup.-1] PGA-C. Dissolved OM reduced the pore volume of micro- and small mesopores 〈3 nm whereas PGA also reduced the volume of larger pores. The [sup.1]H-NMR results of moist samples showed that PGA sorption reduced the amount of water in pores 〈4 nm. In addition, the pore size maximum of AlOOH increased by 150%. Polygalacturonic acid coatings created new interparticle pores of about 10- to 70-nm size that are not stable upon freeze-drying. Porosity changes upon DOM-treatment were not commensurable by [sup.1]H-NMR. Our results indicate that clogging of micro- and small mesopores is not an artifact of freeze-drying. Polygalacturonic acid seems not only to cover the mouth of AlOOH-nanometer pores but also to fill them.
    Keywords: Soil Mineralogy -- Research
    ISSN: 0361-5995
    E-ISSN: 14350661
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Soil Science Society of America Journal, Sept-Oct, 2006, Vol.70(5), p.1547(9)
    Description: Organic coatings on Fe oxides can decrease the accessibility of intraparticle pores for oxyanions like phosphate. We hypothesized that the slow sorption of phosphate to goethite coated with polygalacturonate (PGA) is controlled by the accessibility of external goethite surfaces to phosphate rather than by diffusion of phosphate into micropores ([empty set] 〈 2 nm). We studied the phosphate sorption kinetics of pure and PGA-coated goethites that differed in their microporosity ([N.sub.2] at 77 K, 46 vs. 31 [mm.sup.3] [g.sup.-1]). Because drying may affect the structure or surface coverage of PGA, we also tested the effect of freeze-drying on the slow phosphate sorption. The samples were examined by gas adsorption ([N.sub.2], C[O.sub.2]) and electrophoretic mobility measurements. Phosphate sorption and PGA-C desorption were studied in batch experiments for 3 wk at pH 5. In PGA-coated samples, the slow phosphate sorption was independent of micropore volume. Phosphate displaced on average 57% of PGA-C within 3 wk. Similar to phosphate sorption, the PGA-C desorption comprised a rapid initial desorption, which was followed by a slow C desorption. Sorption competition between phosphate and presorbed PGA depended on the 〈10-nm porosity and the C loading of the adsorbent. The efficacy of phosphate to desorb PGA generally increased after freeze-drying. We conclude for PGA-coated goethites that (i) freeze-drying biased the slow phosphate sorption by changing the structure/surface coverage of PGA, and (ii) within the time frame studied, micropores did not limit the rate of the slow phosphate sorption. Rather, the slow, gradual desorption of PGA and/or the diffusion of phosphate through PGA coatings controlled the slow phosphate sorption to PGA-coated goethite.
    Keywords: Mineralogical Research -- Analysis ; Phosphates -- Research ; Sorption -- Research
    ISSN: 0361-5995
    E-ISSN: 14350661
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Soil Science Society of America journal, 2008, Vol.72(6), pp.1694-1707
    Description: Proton nuclear magnetic resonance (1H NMR) relaxometry has been used to analyze pore size distributions of wet porous samples. To make this method applicable to soil samples, knowledge about contribution from the soil solution to the total proton relaxation is needed. We extracted soil solutions from nine soil samples and determined transverse proton relaxation rates, the concentration of Fe, Mn, and total organic C (TOC), and the pH of the solutions. The effects of Fe, Mn, and TOC on the proton relaxation in the soil solution were compared with those of dissolved Fe2+, Fe3+, and Mn2+ and of glucose, D-cellobiose, potassium hydrogen phthalate, sodium alginate, and agar in model solutions. Proton relaxation rates in the soil solutions were up to 20 times larger than in pure water, which was mainly due to dissolved Fe(III) and Mn(II) species. The relaxivities of Fe and Mn in soil solution were reduced to 40 and 70% compared with Fe(III) and Mn(II) in a model solution, respectively. Smaller relaxivities were primarily due to the formation of metal-organic complexes. We conclude that the proton relaxation in soil samples is generally accelerated by the soil solution, and its contribution must be considered to estimate pore sizes from relaxation times. By using the calculated relaxivities of Fe and Mn in soil solution, the contribution of the soil solution to the total proton relaxation can be estimated from the Fe and Mn concentration in the soil solution. ; Includes references ; p. 1694-1707.
    Keywords: Soil Organic Carbon ; Goethite ; Cellobiose ; Soil Solution ; Agar ; Soil Pore System ; Manganese ; Ions ; Iron ; Colloids ; Sampling ; Alginates ; Glucose ; Extracts ; Chemical Concentration ; Chemical Composition ; Nuclear Magnetic Resonance Spectroscopy ; Montmorillonite ; Sodium Alginate ; Pore Size Distribution ; Proton Relaxation ; Potassium Hydrogen Phthalate
    ISSN: 0361-5995
    E-ISSN: 14350661
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages