Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Water Research, 01 March 2018, Vol.130, pp.185-199
    Description: Nitrate contamination in ground- and surface water is a persistent problem in countries with intense agriculture. The transition zone between rivers and their riparian aquifers, where river water and groundwater interact, may play an important role in mediating nitrate exports, as it can facilitate intensive denitrification, which permanently removes nitrate from the aquatic system. However, the in-situ factors controlling riparian denitrification are not fully understood, as they are often strongly linked and their effects superimpose each other. In this study, we present the evaluation of hydrochemical and isotopic data from a 2-year sampling period of river water and groundwater in the riparian zone along a 3rd order river in Central Germany. Based on bi- and multivariate statistics (Spearman's rank correlation and partial least squares regression) we can show, that highest rates for oxygen consumption and denitrification in the riparian aquifer occur where the fraction of infiltrated river water and at the same time groundwater temperature, are high. River discharge and depth to groundwater are additional explanatory variables for those reaction rates, but of minor importance. Our data and analyses suggest that at locations in the riparian aquifer, which show significant river water infiltration, heterotrophic microbial reactions in the riparian zone may be fueled by bioavailable organic carbon derived from the river water. We conclude that interactions between rivers and riparian groundwater are likely to be a key control of nitrate removal and should be considered as a measure to mitigate high nitrate exports from agricultural catchments.
    Keywords: Riparian Zone ; Nitrate Contamination ; Nitrate Stable Isotopes ; River-Groundwater Interaction ; Denitrification ; Engineering
    ISSN: 0043-1354
    E-ISSN: 1879-2448
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Water Research, 15 April 2019, Vol.153, pp.11-20
    Description: When acidic groundwater flows into an aquatic system the sediment water interface (SWI) acts as a transition zone between the groundwater and lake water, and often exhibits strong physical and biogeochemical gradients. The fate of groundwater-borne solutes, such as Fe(II), is determined by the balance between the exposure time during transport across the SWI and the reaction time within the SWI, however the relative role of groundwater seepage rates and iron kinetics on acidity generation in lakes is unknown. Porewater seepage velocities, porewater chemical profiles, and limnological data were collected across multiple field campaigns over the last two decades, in acid Mine Lake 77, in Lusatia, Germany. This rare data set was analyzed using a Damköhler approach that compares exposure and reactions timescales, to determine that Fe(II) would typically be transported with little reaction across the SWI, spatially separating it from sediment-processes that produce alkalinity and providing a source of acidity to the lake. This Damköhler analysis further showed that remediation should be focused on reducing groundwater seepage velocities and enhancing exposure times. Strategic planting of submerged benthic macroalgae would slow groundwater inflows, as well as oxygenating overlying waters and supplying organic matter to the sediments. A similar Damköhler analysis could be used to assess the fate of any groundwater-borne reactive chemicals (e.g. phosphorus) into lakes and streams.
    Keywords: Reactive Transport ; Sediment Water Interface ; Mine Lake ; Acidity Generation ; Engineering
    ISSN: 0043-1354
    E-ISSN: 1879-2448
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages