Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: mBio, American Society for Microbiology, Vol. 14, No. 1 ( 2023-02-28)
    Type of Medium: Online Resource
    ISSN: 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2023
    detail.hit.zdb_id: 2557172-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: mBio, American Society for Microbiology, Vol. 13, No. 6 ( 2022-12-20)
    Abstract: Few studies have investigated host-bacterial interactions at sites of infection in humans using transcriptomics and metabolomics. Haemophilus ducreyi causes cutaneous ulcers in children and the genital ulcer disease chancroid in adults. We developed a human challenge model in which healthy adult volunteers are infected with H. ducreyi on the upper arm until they develop pustules. Here, we characterized host-pathogen interactions in pustules using transcriptomics and metabolomics and examined interactions between the host transcriptome and metabolome using integrated omics. In a previous pilot study, we determined the human and H. ducreyi transcriptomes and the metabolome of pustule and wounded sites of 4 volunteers (B. Griesenauer, T. M. Tran, K. R. Fortney, D. M. Janowicz, et al., mBio 10:e01193-19, 2019, https://doi.org/10.1128/mBio.01193-19 ). While we could form provisional transcriptional networks between the host and H. ducreyi , the study was underpowered to integrate the metabolome with the host transcriptome. To better define and integrate the transcriptomes and metabolome, we used samples from both the pilot study ( n  = 4) and new volunteers ( n  = 8) to identify 5,495 human differentially expressed genes (DEGs), 123 H. ducreyi DEGs, 205 differentially abundant positive ions, and 198 differentially abundant negative ions. We identified 42 positively correlated and 29 negatively correlated human- H. ducreyi transcriptome clusters. In addition, we defined human transcriptome-metabolome networks consisting of 9 total clusters, which highlighted changes in fatty acid metabolism and mitigation of oxidative damage. Taken together, the data suggest a mixed pro- and anti-inflammatory environment and rewired central metabolism in the host that provides a hostile, nutrient-limited environment for H. ducreyi . IMPORTANCE Interactions between the host and bacteria at sites of infection in humans are poorly understood. We inoculated human volunteers on the upper arm with the skin pathogen H. ducreyi or a buffer control and biopsied the resulting infected and sham-inoculated sites. We performed dual transcriptome sequencing (RNA-seq) and metabolic analysis on the biopsy samples. Network analyses between the host and bacterial transcriptomes and the host transcriptome-metabolome network were used to identify molecules that may be important for the virulence of H. ducreyi in the human host. Our results suggest that the pustule is highly oxidative, contains both pro- and anti-inflammatory components, and causes metabolic shifts in the host, to which H. ducreyi adapts to survive. To our knowledge, this is the first study to integrate transcriptomic and metabolomic responses to a single bacterial pathogen in the human host.
    Type of Medium: Online Resource
    ISSN: 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 2557172-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Immunology Vol. 11 ( 2021-2-3)
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 11 ( 2021-2-3)
    Abstract: The obligate human pathogen Haemophilus ducreyi causes both cutaneous ulcers in children and sexually transmitted genital ulcers (chancroid) in adults. Pathogenesis is dependent on avoiding phagocytosis and exploiting the suppurative granuloma-like niche, which contains a myriad of innate immune cells and memory T cells. Despite this immune infiltrate, long-lived immune protection does not develop against repeated H. ducreyi infections—even with the same strain. Most of what we know about infectious skin diseases comes from naturally occurring infections and/or animal models; however, for H. ducreyi , this information comes from an experimental model of infection in human volunteers that was developed nearly three decades ago. The model mirrors the progression of natural disease and serves as a valuable tool to determine the composition of the immune cell infiltrate early in disease and to identify host and bacterial factors that are required for the establishment of infection and disease progression. Most recently, holistic investigation of the experimentally infected skin microenvironment using multiple “omics” techniques has revealed that non-canonical bacterial virulence factors, such as genes involved in central metabolism, may be relevant to disease progression. Thus, the immune system not only defends the host against H. ducreyi , but also dictates the nutrient availability for the invading bacteria, which must adapt their gene expression to exploit the inflammatory metabolic niche. These findings have broadened our view of the host-pathogen interaction network from considering only classical, effector-based virulence paradigms to include adaptations to the metabolic environment. How both host and bacterial factors interact to determine infection outcome is a current focus in the field. Here, we review what we have learned from experimental H. ducreyi infection about host-pathogen interactions, make comparisons to what is known for other skin pathogens, and discuss how novel technologies will deepen our understanding of this infection.
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2606827-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Microbiology Spectrum, American Society for Microbiology, Vol. 10, No. 2 ( 2022-04-27)
    Abstract: CpxRA is an envelope stress response system that is highly conserved in the Enterobacteriaceae . CpxA has kinase activity for CpxR and phosphatase activity for phospho-CpxR (CpxR-P), a transcription factor. In response to membrane stress, CpxR-P is produced and upregulates genes involved in membrane repair and downregulates genes that encode virulence factors that are trafficked across the cell membrane. Mutants that constitutively activate CpxRA in Salmonella enterica serovar Typhimurium and in uropathogenic Escherichia coli (UPEC) are attenuated in murine models. We hypothesized that pharmacologic activation of CpxR could serve as an antimicrobial/antivirulence strategy and recently showed that 2,3,4,9-tetrahydro-1 H -carbazol-1-amines activate the CpxRA system by inhibiting CpxA phosphatase activity. Here, we tested the ability of a series of three CpxRA-activating compounds with increasing potency to clear UPEC stain CFT073 in a murine urinary tract infection model. We show that these compounds are well tolerated and achieve sufficient levels to activate CpxR in the kidneys, bladder, and urine. Although the first two compounds were ineffective in promoting clearance of CFT073 in the murine model, the most potent derivative, compound 26, significantly reduced bacterial recovery in the urine and trended toward reducing bacterial recovery in the bladder and kidneys, with efficacy similar to ciprofloxacin. Treatment of CFT073 cultured in human urine with compound 26 fostered accumulation of CpxR-P and decreased the expression of proteins involved in siderophore biosynthesis and binding, heme degradation, and flagellar movement. These studies suggest that chemical activation of CpxRA may present a viable strategy for treating infections due to UPEC. IMPORTANCE The increasing prevalence of urinary tract infections (UTIs) due to antibiotic-resistant uropathogenic Escherichia coli (UPEC) is a major public health concern. Bacteria contain proteins that sense their environment and have no human homologs and, thus, are attractive drug targets. CpxRA is a conserved sensing system whose function is to reduce stress in the bacterial cell membrane; activation of CpxRA reduces the expression of virulence determinants, which must cross the cell membrane to reach the bacterial surface. We previously identified a class of compounds that activate CpxRA. We show in a mouse UTI model that our most potent compound significantly reduced recovery of UPEC in the urine, trended toward reducing bacterial recovery in the bladder and kidneys, did not kill UPEC, and downregulated multiple proteins involved in UPEC virulence. Since these compounds do not act by a killing mechanism, they have potential to treat UTIs caused by antibiotic-resistant bacteria.
    Type of Medium: Online Resource
    ISSN: 2165-0497
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 2807133-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 204, No. 5 ( 2022-05-17)
    Abstract: Haemophilus ducreyi causes cutaneous ulcers in children and the genital ulcer disease chancroid in adults. In humans, H. ducreyi is found in the anaerobic environment of an abscess; previous studies comparing bacterial gene expression levels in pustules with the inocula (∼4-h aerobic mid-log-phase cultures) identified several upregulated differentially expressed genes (DEGs) that are associated with anaerobic metabolism. To determine how H. ducreyi alters its gene expression in response to anaerobiosis, we performed RNA sequencing (RNA-seq) on both aerobic and anaerobic broth cultures harvested after 4, 8, and 18 h of growth. Principal-coordinate analysis (PCoA) plots showed that anaerobic growth resulted in distinct transcriptional profiles compared to aerobic growth. During anaerobic growth, early-time-point comparisons (4 versus 8 h) identified few DEGs at a 2-fold change in expression and a false discovery rate (FDR) of 〈 0.01. By 18 h, we observed 18 upregulated and 16 downregulated DEGs. DEGs involved in purine metabolism, the uptake and use of alternative carbon sources, toxin production, nitrate reduction, glycine metabolism, and tetrahydrofolate synthesis were upregulated; DEGs involved in electron transport, thiamine biosynthesis, DNA recombination, peptidoglycan synthesis, and riboflavin synthesis or modification were downregulated. To examine whether transcriptional changes that occur during anaerobiosis overlap those that occur during infection of human volunteers, we compared the overlap of DEGs obtained from 4 h of aerobic growth to 18 h of anaerobic growth to those found between the inocula and pustules in previous studies; the DEGs significantly overlapped. Thus, a major component of H. ducreyi gene regulation in vivo involves adaptation to anaerobiosis. IMPORTANCE In humans, H. ducreyi resides in the anaerobic environment of an abscess and appears to upregulate genes involved in anaerobic metabolism. How anaerobiosis alone affects gene transcription in H. ducreyi is unknown. Using RNA-seq, we investigated how anaerobiosis affects gene transcription over time compared to aerobic growth. Our results suggest that a substantial component of H. ducreyi gene regulation in vivo overlaps the organism’s response to anaerobiosis in vitro . Our data identify potential therapeutic targets that could be inhibited during in vivo growth.
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Infection and Immunity, American Society for Microbiology, Vol. 91, No. 9 ( 2023-09-14)
    Abstract: Haemophilus ducreyi is a causative agent of cutaneous ulcers in children who live in the tropics and of the genital ulcer disease chancroid in sexually active persons. In the anaerobic environment of abscesses and ulcers, anaerobic respiration and mixed acid fermentation (MAF) can be used to provide cellular energy. In Escherichia coli , MAF produces formate, acetate, lactate, succinate, and ethanol; however, MAF has not been studied in H. ducreyi . In human challenge experiments with H. ducreyi 35000HP, transcripts of the formate transporter FocA and pyruvate formate lyase (PflB) were upregulated in pustules compared to the inocula. We made single and double mutants of focA and pflB in 35000HP. Growth of 35000HPΔ focA was similar to 35000HP, but 35000HPΔ pflB and 35000HPΔ focA-pflB had growth defects during both aerobic and anaerobic growth. Mutants lacking pflB did not secrete formate into the media. However, formate was secreted into the media by 35000HPΔ focA , indicating that H. ducreyi has alternative formate transporters. The pH of the media during anaerobic growth decreased for 35000HP and 35000HPΔ focA , but not for 35000HPΔ pflB or 35000HPΔ focA-pflB , indicating that pflB is the main contributor to media acidification during anaerobic growth. We tested whether formate production and transport were required for virulence in seven human volunteers in a mutant versus parent trial between 35000HPΔ focA-pflB and 35000HP. The pustule formation rate was similar for 35000HP (42.9%)- and 35000HPΔ focA-pflB (62%)-inoculated sites. Although formate production occurs during in vitro growth and focA-pflB transcripts are upregulated during human infection, focA and pflB are not required for virulence in humans.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2023
    detail.hit.zdb_id: 1483247-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages