feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    gbv_846861240
    Format: VI, 117 Seiten , Illustrationen
    Content: Current research on runoff and erosion processes, as well as an increasing demand for sustainable watershed management emphasize the need for an improved understanding of sediment dynamics. This involves the accurate assessment of erosion rates and sediment transfer, yield and origin. A variety of methods exist to capture these processes at the catchment scale. Among these, sediment fingerprinting, a technique to trace back the origin of sediment, has attracted increasing attention by the scientific community in recent years. It is a two-step procedure, based on the fundamental assumptions that potential sources of sediment can be reliably discriminated based on a set of characteristic ‘fingerprint’ properties, and that a comparison of source and sediment fingerprints allows to quantify the relative contribution of each source. This thesis aims at further assessing the potential of spectroscopy to assist and improve the sediment fingerprinting technique. Specifically, this work focuses on (1) whether potential sediment sources can be reliably identified based on spectral features (‘fingerprints’), whether (2) these spectral fingerprints permit the quantification of relative source contribution, and whether (3) in situ derived source information is sufficient for this purpose. Furthermore, sediment fingerprinting using spectral information is applied in a study catchment to (4) identify major sources and observe how relative source contributions change between and within individual flood events. And finally, (5) spectral fingerprinting results are compared and combined with simultaneous sediment flux measurements to study sediment origin, transport and storage behaviour. For the sediment fingerprinting approach, soil samples were collected from potential sediment sources within the Isábena catchment, a meso-scale basin in the central Spanish Pyrenees. Undisturbed samples of the upper soil layer were measured in situ using an ASD spectroradiometer and subsequently sampled for measurements in the laboratory. Suspended sediment was sampled automatically by means of ISCO samplers at the catchment as well as at the five major subcatchment outlets during flood events, and stored fine sediment from the channel bed was collected from 14 cross-sections along the main river. Artificial mixtures of known contributions were produced from source soil samples. Then, all source, sediment and mixture samples were dried and spectrally measured in the laboratory. Subsequently, colour coefficients and physically based features with relation to organic carbon, iron oxide, clay content and carbonate, were calculated from all in situ and laboratory spectra. Spectral parameters passing a number of prerequisite tests were submitted to principal component analyses to study natural clustering of samples, discriminant function analyses to observe source differentiation accuracy, and a mixing model for source contribution assessment. In addition, annual as well as flood event based suspended sediment fluxes from the catchment and its subcatchments were calculated from rainfall, water discharge and suspended sediment concentration measurements using rating curves and Quantile Regression Forests. Results of sediment flux monitoring were interpreted individually with respect to storage behaviour, compared to fingerprinting source ascriptions and combined with fingerprinting to assess their joint explanatory potential. In response to the key questions of this work, (1) three source types (land use) and five spatial sources (subcatchments) could be reliably discriminated based on spectral fingerprints. The artificial mixture experiment revealed that while (2) laboratory parameters permitted source contribution assessment, (3) the use of in situ derived information was insufficient. Apparently, high discrimination accuracy does not necessarily imply good quantification results. When applied to suspended sediment samples of the catchment outlet, the spectral fingerprinting approach was able to (4) quantify the major sediment sources: badlands and the Villacarli subcatchment, respectively, were identified as main contributors, which is consistent with field observations and previous studies. Thereby, source contribution was found to vary both, within and between individual flood events. Also sediment flux was found to vary considerably, annually as well as seasonally and on flood event base. Storage was confirmed to play an important role in the sediment dynamics of the studied catchment, whereas floods with lower total sediment yield tend to deposit and floods with higher yield rather remove material from the channel bed. Finally, a comparison of flux measurements with fingerprinting results highlighted the fact that (5) immediate transport from sources to the catchment outlet cannot be assumed. A combination of the two methods revealed different aspects of sediment dynamics that none of the techniques could have uncovered individually. In summary, spectral properties provide a fast, non-destructive, and cost-efficient means to discriminate and quantify sediment sources, whereas, unfortunately, straight-forward in situ collected source information is insufficient for the approach. Mixture modelling using artificial mixtures permits valuable insights into the capabilities and limitations of the method and similar experiments are strongly recommended to be performed in the future. Furthermore, a combination of techniques such as e.g. (spectral) sediment fingerprinting and sediment flux monitoring can provide comprehensive understanding of sediment dynamics
    Note: Dissertation Universität Potsdam 2015
    Additional Edition: Erscheint auch als$nOnline-Ausgabe Brosinsky, Arlena Spectral fingerprinting Potsdam, 2015
    Language: English
    Keywords: Sediment ; Sedimentanalyse ; Spektroskopie ; Hochschulschrift
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    gbv_846861569
    Format: 1 Online-Ressource (VI, 117 Seiten) , Illustrationen
    Content: Current research on runoff and erosion processes, as well as an increasing demand for sustainable watershed management emphasize the need for an improved understanding of sediment dynamics. This involves the accurate assessment of erosion rates and sediment transfer, yield and origin. A variety of methods exist to capture these processes at the catchment scale. Among these, sediment fingerprinting, a technique to trace back the origin of sediment, has attracted increasing attention by the scientific community in recent years. It is a two-step procedure, based on the fundamental assumptions that potential sources of sediment can be reliably discriminated based on a set of characteristic ‘fingerprint’ properties, and that a comparison of source and sediment fingerprints allows to quantify the relative contribution of each source. This thesis aims at further assessing the potential of spectroscopy to assist and improve the sediment fingerprinting technique. Specifically, this work focuses on (1) whether potential sediment sources can be reliably identified based on spectral features (‘fingerprints’), whether (2) these spectral fingerprints permit the quantification of relative source contribution, and whether (3) in situ derived source information is sufficient for this purpose. Furthermore, sediment fingerprinting using spectral information is applied in a study catchment to (4) identify major sources and observe how relative source contributions change between and within individual flood events. And finally, (5) spectral fingerprinting results are compared and combined with simultaneous sediment flux measurements to study sediment origin, transport and storage behaviour. For the sediment fingerprinting approach, soil samples were collected from potential sediment sources within the Isábena catchment, a meso-scale basin in the central Spanish Pyrenees. Undisturbed samples of the upper soil layer were measured in situ using an ASD spectroradiometer and subsequently sampled for measurements in the laboratory. Suspended sediment was sampled automatically by means of ISCO samplers at the catchment as well as at the five major subcatchment outlets during flood events, and stored fine sediment from the channel bed was collected from 14 cross-sections along the main river. Artificial mixtures of known contributions were produced from source soil samples. Then, all source, sediment and mixture samples were dried and spectrally measured in the laboratory. Subsequently, colour coefficients and physically based features with relation to organic carbon, iron oxide, clay content and carbonate, were calculated from all in situ and laboratory spectra. Spectral parameters passing a number of prerequisite tests were submitted to principal component analyses to study natural clustering of samples, discriminant function analyses to observe source differentiation accuracy, and a mixing model for source contribution assessment. In addition, annual as well as flood event based suspended sediment fluxes from the catchment and its subcatchments were calculated from rainfall, water discharge and suspended sediment concentration measurements using rating curves and Quantile Regression Forests. Results of sediment flux monitoring were interpreted individually with respect to storage behaviour, compared to fingerprinting source ascriptions and combined with fingerprinting to assess their joint explanatory potential. In response to the key questions of this work, (1) three source types (land use) and five spatial sources (subcatchments) could be reliably discriminated based on spectral fingerprints. The artificial mixture experiment revealed that while (2) laboratory parameters permitted source contribution assessment, (3) the use of in situ derived information was insufficient. Apparently, high discrimination accuracy does not necessarily imply good quantification results. When applied to suspended sediment samples of the catchment outlet, the spectral fingerprinting approach was able to (4) quantify the major sediment sources: badlands and the Villacarli subcatchment, respectively, were identified as main contributors, which is consistent with field observations and previous studies. Thereby, source contribution was found to vary both, within and between individual flood events. Also sediment flux was found to vary considerably, annually as well as seasonally and on flood event base. Storage was confirmed to play an important role in the sediment dynamics of the studied catchment, whereas floods with lower total sediment yield tend to deposit and floods with higher yield rather remove material from the channel bed. Finally, a comparison of flux measurements with fingerprinting results highlighted the fact that (5) immediate transport from sources to the catchment outlet cannot be assumed. A combination of the two methods revealed different aspects of sediment dynamics that none of the techniques could have uncovered individually. In summary, spectral properties provide a fast, non-destructive, and cost-efficient means to discriminate and quantify sediment sources, whereas, unfortunately, straight-forward in situ collected source information is insufficient for the approach. Mixture modelling using artificial mixtures permits valuable insights into the capabilities and limitations of the method and similar experiments are strongly recommended to be performed in the future. Furthermore, a combination of techniques such as e.g. (spectral) sediment fingerprinting and sediment flux monitoring can provide comprehensive understanding of sediment dynamics
    Note: Dissertation Universität Potsdam 2015
    Additional Edition: Erscheint auch als$nDruckausgabe Brosinsky, Arlena Spectral fingerprinting Potsdam, 2015
    Language: English
    Keywords: Sediment ; Sedimentanalyse ; Spektroskopie ; Hochschulschrift
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages