Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: mBio, American Society for Microbiology, Vol. 10, No. 3 ( 2019-06-25)
    Abstract: A major gap in understanding infectious diseases is the lack of information about molecular interaction networks between pathogens and the human host. Haemophilus ducreyi causes the genital ulcer disease chancroid in adults and is a leading cause of cutaneous ulcers in children in the tropics. We developed a model in which human volunteers are infected on the upper arm with H. ducreyi until they develop pustules. To define the H. ducreyi and human interactome, we determined bacterial and host transcriptomic and host metabolomic changes in pustules. We found that in vivo H. ducreyi transcripts were distinct from those in the inocula, as were host transcripts in pustule and wounded control sites. Many of the upregulated H. ducreyi genes were found to be involved in ascorbic acid and anaerobic metabolism and inorganic ion/nutrient transport. The top 20 significantly expressed human pathways showed that all were involved in immune responses. We generated a bipartite network for interactions between host and bacterial gene transcription; multiple positively correlated networks contained H. ducreyi genes involved in anaerobic metabolism and host genes involved with the immune response. Metabolomic studies showed that pustule and wounded samples had different metabolite compositions; the top ion pathway involved ascorbate and aldarate metabolism, which correlated with the H. ducreyi transcriptional response and upregulation of host genes involved in ascorbic acid recycling. These data show that an interactome exists between H. ducreyi and the human host and suggest that H. ducreyi exploits the metabolic niche created by the host immune response. IMPORTANCE Dual RNA sequencing (RNA-seq) offers the promise of determining an interactome at a transcriptional level between a bacterium and the host but has yet to be done on any bacterial infection in human tissue. We performed dual RNA-seq and metabolomics analyses on wounded and infected sites following experimental infection of the arm with H. ducreyi . Our results suggest that H. ducreyi survives in an abscess by utilizing l -ascorbate as an alternative carbon source, possibly taking advantage of host ascorbic acid recycling, and that H. ducreyi also adapts by upregulating genes involved in anaerobic metabolism and inorganic ion and nutrient transport. To our knowledge, this is the first description of an interaction network between a bacterium and the human host at a site of infection.
    Type of Medium: Online Resource
    ISSN: 2161-2129 , 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 2557172-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Infection and Immunity, American Society for Microbiology, Vol. 85, No. 9 ( 2017-09)
    Abstract: During infection, Neisseria gonorrhoeae senses and responds to stress; such responses may be modulated by MisRS (NGO0177 and NGO0176), a two-component system that is a homolog of CpxRA. In Escherichia coli , CpxRA senses and responds to envelope stress; CpxA is a sensor kinase/phosphatase for CpxR, a response regulator. When a cpxA mutant is grown in medium containing glucose, CpxR is phosphorylated by acetyl phosphate but cannot be dephosphorylated, resulting in constitutive activation. Kandler and coworkers (J. L. Kandler, C. L. Holley, J. L. Reimche, V. Dhulipala, J. T. Balthazar, A. Muszyński, R. W. Carlson, and W. M. Shafer, Antimicrob Agents Chemother 60:4690–4700, 2016, https://doi.org/10.1128/AAC.00823-16 ) showed that MisR (CpxR) is required for the maintenance of membrane integrity and resistance to antimicrobial peptides, suggesting a role in gonococcal survival in vivo . Here, we evaluated the contributions of MisR and MisS (CpxA) to gonococcal infection in a murine model of cervicovaginal colonization and identified MisR-regulated genes using RNA sequencing (RNA-Seq). The deletion of misR or misS severely reduced the capacity of N. gonorrhoeae to colonize mice or maintain infection over a 7-day period and reduced microbial fitness after exposure to heat shock. Compared to the wild type (WT), the inactivation of misR identified 157 differentially regulated genes, most of which encoded putative envelope proteins. The inactivation of misS identified 17 differentially regulated genes compared to the WT and 139 differentially regulated genes compared to the misR mutant, 111 of which overlapped those differentially expressed in the comparison of the WT versus the misR mutant. These data indicate that an intact MisRS system is required for gonococcal infection of mice. Provided the MisR is constitutively phosphorylated in the misS mutant, the data suggest that controlled but not constitutive activation is required for gonococcal infection in mice.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2017
    detail.hit.zdb_id: 1483247-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: mBio, American Society for Microbiology, Vol. 14, No. 1 ( 2023-02-28)
    Type of Medium: Online Resource
    ISSN: 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2023
    detail.hit.zdb_id: 2557172-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: mBio, American Society for Microbiology, Vol. 13, No. 6 ( 2022-12-20)
    Abstract: Few studies have investigated host-bacterial interactions at sites of infection in humans using transcriptomics and metabolomics. Haemophilus ducreyi causes cutaneous ulcers in children and the genital ulcer disease chancroid in adults. We developed a human challenge model in which healthy adult volunteers are infected with H. ducreyi on the upper arm until they develop pustules. Here, we characterized host-pathogen interactions in pustules using transcriptomics and metabolomics and examined interactions between the host transcriptome and metabolome using integrated omics. In a previous pilot study, we determined the human and H. ducreyi transcriptomes and the metabolome of pustule and wounded sites of 4 volunteers (B. Griesenauer, T. M. Tran, K. R. Fortney, D. M. Janowicz, et al., mBio 10:e01193-19, 2019, https://doi.org/10.1128/mBio.01193-19 ). While we could form provisional transcriptional networks between the host and H. ducreyi , the study was underpowered to integrate the metabolome with the host transcriptome. To better define and integrate the transcriptomes and metabolome, we used samples from both the pilot study ( n  = 4) and new volunteers ( n  = 8) to identify 5,495 human differentially expressed genes (DEGs), 123 H. ducreyi DEGs, 205 differentially abundant positive ions, and 198 differentially abundant negative ions. We identified 42 positively correlated and 29 negatively correlated human- H. ducreyi transcriptome clusters. In addition, we defined human transcriptome-metabolome networks consisting of 9 total clusters, which highlighted changes in fatty acid metabolism and mitigation of oxidative damage. Taken together, the data suggest a mixed pro- and anti-inflammatory environment and rewired central metabolism in the host that provides a hostile, nutrient-limited environment for H. ducreyi . IMPORTANCE Interactions between the host and bacteria at sites of infection in humans are poorly understood. We inoculated human volunteers on the upper arm with the skin pathogen H. ducreyi or a buffer control and biopsied the resulting infected and sham-inoculated sites. We performed dual transcriptome sequencing (RNA-seq) and metabolic analysis on the biopsy samples. Network analyses between the host and bacterial transcriptomes and the host transcriptome-metabolome network were used to identify molecules that may be important for the virulence of H. ducreyi in the human host. Our results suggest that the pustule is highly oxidative, contains both pro- and anti-inflammatory components, and causes metabolic shifts in the host, to which H. ducreyi adapts to survive. To our knowledge, this is the first study to integrate transcriptomic and metabolomic responses to a single bacterial pathogen in the human host.
    Type of Medium: Online Resource
    ISSN: 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 2557172-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Infection and Immunity, American Society for Microbiology, Vol. 83, No. 8 ( 2015-08), p. 3281-3292
    Abstract: The (p)ppGpp-mediated stringent response is important for bacterial survival in nutrient limiting conditions. For maximal effect, (p)ppGpp interacts with the cofactor DksA, which stabilizes (p)ppGpp's interaction with RNA polymerase. We previously demonstrated that (p)ppGpp was required for the virulence of Haemophilus ducreyi in humans. Here, we constructed an H. ducreyi dksA mutant and showed it was also partially attenuated for pustule formation in human volunteers. To understand the roles of (p)ppGpp and DksA in gene regulation in H. ducreyi , we defined genes potentially altered by (p)ppGpp and DksA deficiency using transcriptome sequencing (RNA-seq). In bacteria collected at stationary phase, lack of (p)ppGpp and DksA altered expression of 28% and 17% of H. ducreyi open reading frames, respectively, including genes involved in transcription, translation, and metabolism. There was significant overlap in genes differentially expressed in the (p)ppGpp mutant relative to the dksA mutant. Loss of (p)ppGpp or DksA resulted in the dysregulation of several known virulence determinants. Deletion of dksA downregulated lspB and rendered the organism less resistant to phagocytosis and increased its sensitivity to oxidative stress. Both mutants had reduced ability to attach to human foreskin fibroblasts; the defect correlated with reduced expression of the Flp adhesin proteins in the (p)ppGpp mutant but not in the dksA mutant, suggesting that DksA regulates the expression of an unknown cofactor(s) required for Flp-mediated adherence. We conclude that both (p)ppGpp and DksA serve as major regulators of H. ducreyi gene expression in stationary phase and have both overlapping and unique contributions to pathogenesis.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2015
    detail.hit.zdb_id: 1483247-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Infection and Immunity, American Society for Microbiology, Vol. 86, No. 3 ( 2018-03)
    Abstract: CpxRA is an envelope stress response system found in all members of the family Enterobacteriaceae ; CpxA has kinase activity for CpxR and phosphatase activity for phospho-CpxR, a transcription factor. CpxR also accepts phosphate groups from acetyl phosphate, a glucose metabolite. Activation of CpxR increases the transcription of genes encoding membrane repair and downregulates virulence determinants. We hypothesized that activation of CpxR could serve as an antimicrobial/antivirulence strategy and discovered compounds that activate CpxR in Escherichia coli by inhibiting CpxA phosphatase activity. As a prelude to testing such compounds in vivo , here we constructed cpxA (in the presence of glucose, CpxR is activated because of a lack of CpxA phosphatase) and cpxR (system absent) deletion mutants of uropathogenic E. coli (UPEC) CFT073. By RNA sequencing, few transcriptional differences were noted between the cpxR mutant and its parent, but in the cpxA mutant, several UPEC virulence determinants were downregulated, including the fim and pap operons, and it exhibited reduced mannose-sensitive hemagglutination of guinea pig red blood cells in vitro . In competition experiments with mice, both mutants were less fit than the parent in the urine, bladder, and kidney; these fitness defects were complemented in trans . Unexpectedly, in single-strain challenges, only the cpxA mutant was attenuated for virulence in the kidney but not in the bladder or urine. For the cpxA mutant, this may be due to the preferential use of amino acids over glucose as a carbon source in the bladder and urine by UPEC. These studies suggest that CpxA phosphatase inhibitors may have some utility for treating complex urinary tract infections.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2018
    detail.hit.zdb_id: 1483247-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: mBio, American Society for Microbiology, Vol. 5, No. 1 ( 2014-02-28)
    Abstract: Pathogenic bacteria encounter a wide range of stresses in their hosts, including nutrient limitation; the ability to sense and respond to such stresses is crucial for bacterial pathogens to successfully establish an infection. Gram-negative bacteria frequently utilize the alternative sigma factor RpoS to adapt to stresses and stationary phase. However, homologs of RpoS are absent in some bacterial pathogens, including Haemophilus ducreyi , which causes chancroid and facilitates the acquisition and transmission of HIV-1. Here, we provide evidence that, in the absence of an RpoS homolog, Hfq serves as a major contributor of stationary-phase gene regulation and that Hfq is required for H. ducreyi to infect humans. To our knowledge, this is the first study describing Hfq as a major contributor of stationary-phase gene regulation in bacteria and the requirement of Hfq for the virulence of a bacterial pathogen in humans.
    Type of Medium: Online Resource
    ISSN: 2161-2129 , 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2014
    detail.hit.zdb_id: 2557172-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Infection and Immunity, American Society for Microbiology, Vol. 84, No. 5 ( 2016-05), p. 1514-1525
    Abstract: Haemophilus ducreyi causes the sexually transmitted disease chancroid in adults and cutaneous ulcers in children. In humans, H. ducreyi resides in an abscess and must adapt to a variety of stresses. Previous studies (D. Gangaiah, M. Labandeira-Rey, X. Zhang, K. R. Fortney, S. Ellinger, B. Zwickl, B. Baker, Y. Liu, D. M. Janowicz, B. P. Katz, C. A. Brautigam, R. S. Munson, Jr., E. J. Hansen, and S. M. Spinola, mBio 5:e01081-13, 2014, http://dx.doi.org/10.1128/mBio.01081-13 ) suggested that H. ducreyi encounters growth conditions in human lesions resembling those found in stationary phase. However, how H. ducreyi transcriptionally responds to stress during human infection is unknown. Here, we determined the H. ducreyi transcriptome in biopsy specimens of human lesions and compared it to the transcriptomes of bacteria grown to mid-log, transition, and stationary phases. Multidimensional scaling showed that the in vivo transcriptome is distinct from those of in vitro growth. Compared to the inoculum (mid-log-phase bacteria), H. ducreyi harvested from pustules differentially expressed ∼93 genes, of which 62 were upregulated. The upregulated genes encode homologs of proteins involved in nutrient transport, alternative carbon pathways ( l -ascorbate utilization and metabolism), growth arrest response, heat shock response, DNA recombination, and anaerobiosis. H. ducreyi upregulated few genes ( hgbA , flp-tad , and lspB-lspA2 ) encoding virulence determinants required for human infection. Most genes regulated by CpxRA, RpoE, Hfq, (p)ppGpp, and DksA, which control the expression of virulence determinants and adaptation to a variety of stresses, were not differentially expressed in vivo , suggesting that these systems are cycling on and off during infection. Taken together, these data suggest that the in vivo transcriptome is distinct from those of in vitro growth and that adaptation to nutrient stress and anaerobiosis is crucial for H. ducreyi survival in humans.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2016
    detail.hit.zdb_id: 1483247-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 195, No. 15 ( 2013-08), p. 3486-3502
    Abstract: Haemophilus ducreyi causes chancroid, a genital ulcer disease that facilitates the transmission of human immunodeficiency virus type 1. In humans, H. ducreyi is surrounded by phagocytes and must adapt to a hostile environment to survive. To sense and respond to environmental cues, bacteria frequently use two-component signal transduction (2CST) systems. The only obvious 2CST system in H. ducreyi is CpxRA; CpxR is a response regulator, and CpxA is a sensor kinase. Previous studies by Hansen and coworkers showed that CpxR directly represses the expression of dsrA , the lspB - lspA2 operon, and the flp operon, which are required for virulence in humans. They further showed that CpxA functions predominantly as a phosphatase in vitro to maintain the expression of virulence determinants. Since a cpxA mutant is avirulent while a cpxR mutant is fully virulent in humans, CpxA also likely functions predominantly as a phosphatase in vivo . To better understand the role of H. ducreyi CpxRA in controlling virulence determinants, here we defined genes potentially regulated by CpxRA by using RNA-Seq. Activation of CpxR by deletion of cpxA repressed nearly 70% of its targets, including seven established virulence determinants. Inactivation of CpxR by deletion of cpxR differentially regulated few genes and increased the expression of one virulence determinant. We identified a CpxR binding motif that was enriched in downregulated but not upregulated targets. These data reinforce the hypothesis that CpxA phosphatase activity plays a critical role in controlling H. ducreyi virulence in vivo . Characterization of the downregulated genes may offer new insights into pathogenesis.
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2013
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 196, No. 23 ( 2014-12), p. 4012-4025
    Abstract: Haemophilus ducreyi causes the sexually transmitted disease chancroid and a chronic limb ulceration syndrome in children. In humans, H. ducreyi is found in an abscess and overcomes a hostile environment to establish infection. To sense and respond to membrane stress, bacteria utilize two-component systems (TCSs) and extracytoplasmic function (ECF) sigma factors. We previously showed that activation of CpxRA, the only intact TCS in H. ducreyi , does not regulate homologues of envelope protein folding factors but does downregulate genes encoding envelope-localized proteins, including many virulence determinants. H. ducreyi also harbors a homologue of RpoE, which is the only ECF sigma factor in the organism. To potentially understand how H. ducreyi responds to membrane stress, here we defined RpoE-dependent genes using transcriptome sequencing (RNA-Seq). We identified 180 RpoE-dependent genes, of which 98% were upregulated; a major set of these genes encodes homologues of envelope maintenance and repair factors. We also identified and validated a putative RpoE promoter consensus sequence, which was enriched in the majority of RpoE-dependent targets. Comparison of RpoE-dependent genes to those controlled by CpxR showed that each transcription factor regulated a distinct set of genes. Given that RpoE activated a large number of genes encoding envelope maintenance and repair factors and that CpxRA represses genes encoding envelope-localized proteins, these data suggest that RpoE and CpxRA appear to play distinct yet complementary roles in regulating envelope homeostasis in H. ducreyi .
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2014
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages