feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mohamed, Ibrahim K.  (1)
  • 1
    UID:
    edochu_18452_25169
    Format: 1 Online-Ressource (9 Seiten)
    Content: Low-speed wind tunnel experiments are conducted to study the aerodynamic performance of a half-span delta wing with 45° leading-edge sweep at subsonic flow regime. The experiments are carried out at a Reynolds number of 8.37 × 105, a free-stream Mach number of 0.1 and angles of attack up to 25°, in steps of 5°. The test model was designed with thirty-two pressure taps fixed on its surfaces (sixteen on each side). Multi-tube manometers were connected to these taps using long tubes to enable recording the pressure readings. Surface pressure distributions and aerodynamic characteristics were calculated at different span-wise locations along the non-dimensional chord-wise distance. Results exhibited that most lift on the studied wing is generated in the region close to the leading edge for all the studied incidence angles. Additional lift is created in the region close to the root chord rather than the tip chord, whereas drag forces increases from tip to root. This can be attributed to the formation of trailing edge vortexes due to the flow separation at the wing leading edge that produces more drag, hence suppressing lift. The study showed also that angle of attack increases the drag coefficient from tip to root, especially at high angle of attack, indicating unfavourable behaviour for manoeuvring. Moreover, the angle of attack increased the pitching moment coefficient up to 10° before it drops sharply until it reaches the tip of the wing model.
    Content: Peer Reviewed
    Note: This article was supported by the German Research Foundation (DFG) and the Open Access Publication Fund of Humboldt-Universität zu Berlin.
    In: Amsterdam u.a. : Elsevier, 61,12, Seiten 9427-9435
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages