feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    edochu_18452_22240
    Format: 1 Online-Ressource (6 Seiten)
    Content: Silencing of SlSUT2 expression in tomato plants leads to a dwarfed phenotype, reduced pollen vitality and reduces pollen germination rate. Male sterility of flowers, together with a dwarfed growth behavior is reminiscent to brassinosteroid defective mutant plants. Therefore we aimed to rescue the SlSUT2 silencing phenotype by local brassinosteroid application. The phenotypical effects of SlSUT2 down-regulation could partially be rescued by epi-brassinolide treatment suggesting that SlSUT2 interconnects sucrose partitioning with brassinosteroid signaling. We previously showed that SlSUT2 silenced plants show increased mycorrhization and, this effect was explained by a putative sucrose retrieval function of SlSUT2 at the periarbuscular membrane. More recently, we reported that the symbiotic interaction between Solanaceous hosts and AM fungi is directly affected by watering the roots with epi-brassinolide. Here we show that the SlSUT2 effects on mycorrhiza are not only based on the putative sucrose retrieval function of SlSUT2 at the periarbuscular membrane. Our analyses argue that brassinosteroids as well as SlSUT2 per se can impact the arbuscular morphology/architecture and thereby affect the efficiency of nutrient exchange between both symbionts and the mycorrhizal growth benefit for the plant.
    Content: Peer Reviewed
    Note: This article was supported by the Open Access Publication Fund of Humboldt-Universität zu Berlin.
    In: Austin, Tex. : Landes Bioscience, 15,2
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    edochu_18452_20938
    Format: 1 Online-Ressource (13 Seiten)
    ISSN: 1664-462X , 1664-462X
    Content: Together with several proteins involved in brassinosteroid (BR) signaling and synthesis, the membrane steroid binding protein 1 (MSBP1) was identified within the interactome of the sucrose transporter of tomato (SlSUT2). We asked whether MSBP1 is also involved in BR signaling as assumed for the AtMSBP1 protein from Arabidopsis and whether it impacts root colonization with arbuscular mycorrhizal (AM) fungi in a similar way as shown previously for SlSUT2. In addition, we asked whether brassinosteroids per se affect efficiency of root colonization by AM fungi. We carried out a set of experiments with transgenic tobacco plants with increased and decreased MSBP1 expression levels. We investigated the plant and the mycorrhizal phenotype of these transgenic plants and tested the involvement of MSBP1 in BR metabolism by application of epi-brassinolide and brassinazole, an inhibitor of BR biosynthesis. We show that the phenotype of the transgenic tobacco plants with increased or reduced MSBP1 expression is consistent with an inhibitory role of MSBP1 in BR signaling. MSBP1 overexpression could be mimicked by brassinazole treatment. Interestingly, manipulation of MSBP1 expression in transgenic tobacco plants not only affected plant growth and development, but also the host plant responses toward colonization with AM fungi, as well as arbuscular architecture. Moreover, we observed that brassinosteroids indeed have a direct impact on the nutrient exchange in AM symbiosis and on the biomass production of colonized host plants. Furthermore, arbuscular morphology is affected by changes in MSBP1 expression and brassinolide or brassinazole treatments. We conclude that host plant growth responses and nutrient exchange within the symbiosis with AM fungi is controlled by brassinosteroids and might be impeded by the MSBP1 protein.
    Content: Peer Reviewed
    Note: This article was supported by the German Research Foundation (DFG) and the Open Access Publication Fund of Humboldt-Universität zu Berlin.
    In: Lausanne : Frontiers Media, 10, 1664-462X
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages