Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physiological Society  (8)
  • 1
    Online Resource
    Online Resource
    American Physiological Society ; 2000
    In:  American Journal of Physiology-Gastrointestinal and Liver Physiology Vol. 279, No. 6 ( 2000-12-01), p. G1343-G1354
    In: American Journal of Physiology-Gastrointestinal and Liver Physiology, American Physiological Society, Vol. 279, No. 6 ( 2000-12-01), p. G1343-G1354
    Abstract: Pancreatic acinar cells express keratins 8 and 18 (K8/18), which form cytoplasmic filament (CF) and apicolateral filament (ALF) pools. Hepatocyte K8/18 CF provide important protection from environmental stresses, but disruption of acinar cell CF has no significant impact. We asked whether acinar cell ALF are important in providing cytoprotective roles by studying keratin filaments in pancreata of K8- and K18-null mice. K8-null pancreas lacks both keratin pools, but K18-null pancreas lacks only CF. Mouse but not human acinar cells also express apicolateral keratin 19 (K19), which explains the presence of apicolateral keratins in K18-null pancreas. K8- and K18-null pancreata are histologically normal, and their acini respond similarly to stimulated secretion, although K8-null acini viability is reduced. Absence of total filaments (K8-null) or CF (K18-null) does not increase susceptibility to pancreatitis induced by caerulein or a choline-deficient diet. In normal and K18-null acini, K19 is upregulated after caerulein injury and, unexpectedly, forms CF. As in hepatocytes, acinar injury is also associated with keratin hyperphosphorylation. Hence, K19 forms ALF in mouse acinar cells and helps define two distinct ALF and CF pools. On injury, K19 forms CF that revert to ALF after healing. Acinar keratins appear to be dispensable for cytoprotection, in contrast to hepatocyte keratins, despite similar hyperphosphorylation patterns after injury.
    Type of Medium: Online Resource
    ISSN: 0193-1857 , 1522-1547
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2000
    detail.hit.zdb_id: 1477329-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Physiological Society ; 2023
    In:  American Journal of Physiology-Gastrointestinal and Liver Physiology Vol. 325, No. 2 ( 2023-08-01), p. G184-G195
    In: American Journal of Physiology-Gastrointestinal and Liver Physiology, American Physiological Society, Vol. 325, No. 2 ( 2023-08-01), p. G184-G195
    Abstract: There is increasing evidence for the importance of the nuclear envelope in lipid metabolism, nonalcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH). Human mutations in LMNA, encoding A-type nuclear lamins, cause early-onset insulin resistance and NASH, while hepatocyte-specific deletion of Lmna predisposes to NASH with fibrosis in male mice. Given that variants in the gene encoding LAP2α, a nuclear protein that regulates lamin A/C, were previously identified in patients with NAFLD, we sought to determine the role of LAP2α in NAFLD using a mouse genetic model. Hepatocyte-specific Lap2α-knockout ( Lap2α (ΔHep) ) mice and littermate controls were fed normal chow or high-fat diet (HFD) for 8 wk or 6 mo. Unexpectedly, male Lap2α (ΔHep) mice showed no increase in hepatic steatosis or NASH compared with controls. Rather, Lap2α (ΔHep) mice demonstrated reduced hepatic steatosis, with decreased NASH and fibrosis after long-term HFD. Accordingly, pro-steatotic genes including Cidea, Mogat1, and Cd36 were downregulated in Lap2α (ΔHep) mice, along with concomitant decreases in expression of pro-inflammatory and pro-fibrotic genes. These data indicate that hepatocyte-specific Lap2α deletion protects against hepatic steatosis and NASH in mice and raise the possibility that LAP2α could become a potential therapeutic target in human NASH. NEW & NOTEWORTHY The nuclear envelope and lamina regulate lipid metabolism and susceptibility to nonalcoholic steatohepatitis (NASH), but the role of the nuclear lamin-binding protein LAP2α in NASH has not been explored. Our data demonstrate that hepatocyte-specific loss of LAP2α protects against diet-induced hepatic steatosis, NASH, and fibrosis in male mice, with downregulation of pro-steatotic, pro-inflammatory, and pro-fibrotic lamin-regulated genes. These findings suggest that targeting LAP2α could have future potential as a novel therapeutic avenue in NASH.
    Type of Medium: Online Resource
    ISSN: 0193-1857 , 1522-1547
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2023
    detail.hit.zdb_id: 1477329-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: American Journal of Physiology-Gastrointestinal and Liver Physiology, American Physiological Society, Vol. 300, No. 1 ( 2011-01), p. G12-G20
    Abstract: Heme oxygenase-1 (HO-1) induction by hemin or Panhematin protects against experimental pancreatitis. As a preclinical first step toward determining whether HO-1 upregulation is a viable target in acute pancreatitis (AP) patients, we tested the hypothesis that HO-1 expression in peripheral blood mononuclear cell (PBMC) subsets of hospitalized patients with mild AP is upregulated then normalizes upon recovery and that cells from AP patients have the potential to upregulate their HO-1 ex vivo if exposed to Panhematin. PBMCs were isolated on days 1 and 3 of hospitalization from the blood of 18 AP patients, and PMBC HO-1 levels were compared with PMBCs of 15 hospitalized controls (HC) and 7 volunteer healthy controls (VC). On day 1 of hospitalization, AP patients compared with VCs had higher HO-1 expression in monocytes and neutrophils. Notably, AP monocyte HO-1 levels decreased significantly upon recovery. Panhematin induced HO-1 in ex vivo cultured AP PBMCs more readily than in HC or VC PBMCs. Furthermore, PBMCs from acutely ill AP patients on day 1 were more responsive to HO-1 induction compared with day 3 upon recovery. Similarly, mouse splenocytes had enhanced HO-1 inducibility as their pancreatitis progressed from mild to severe. In conclusion, AP leads to reversible PBMC HO-1 upregulation that is associated with clinical improvement and involves primarily monocytes. Leukocytes from AP patients or mice with AP are primed for HO-1 induction by Panhematin, which suggests that Panhematin could offer a therapeutic benefit.
    Type of Medium: Online Resource
    ISSN: 0193-1857 , 1522-1547
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2011
    detail.hit.zdb_id: 1477329-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Physiological Society ; 1999
    In:  American Journal of Physiology-Gastrointestinal and Liver Physiology Vol. 277, No. 6 ( 1999-12-01), p. G1108-G1137
    In: American Journal of Physiology-Gastrointestinal and Liver Physiology, American Physiological Society, Vol. 277, No. 6 ( 1999-12-01), p. G1108-G1137
    Abstract: The mammalian cell cytoskeleton consists of a diverse group of fibrillar elements that play a pivotal role in mediating a number of digestive and nondigestive cell functions, including secretion, absorption, motility, mechanical integrity, and mitosis. The cytoskeleton of higher-eukaryotic cells consists of three highly abundant major protein families: microfilaments (MF), microtubules (MT), and intermediate filaments (IF), as well as a growing number of associated proteins. Within digestive epithelia, the prototype members of these three protein families are actins, tubulins, and keratins, respectively. This review highlights the important structural, regulatory, functional, and unique features of the three major cytoskeletal protein groups in digestive epithelia. The emerging exciting biological aspects of these protein groups are their involvement in cell signaling via direct or indirect interaction with a growing list of associated proteins (MF, MT, IF), the identification of several disease-causing mutations (IF, MF), the functional role that they play in protection from environmental stresses (IF), and their functional integration via several linker proteins that bridge two or potentially all three of these groups together. The use of agents that target specific cytoskeletal elements as therapeutic modalities for digestive diseases offers potential unique areas of intervention that remain to be fully explored.
    Type of Medium: Online Resource
    ISSN: 0193-1857 , 1522-1547
    Language: English
    Publisher: American Physiological Society
    Publication Date: 1999
    detail.hit.zdb_id: 1477329-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Physiological Society ; 2000
    In:  American Journal of Physiology-Gastrointestinal and Liver Physiology Vol. 278, No. 6 ( 2000-06-01), p. G1000-G1009
    In: American Journal of Physiology-Gastrointestinal and Liver Physiology, American Physiological Society, Vol. 278, No. 6 ( 2000-06-01), p. G1000-G1009
    Abstract: Barrett's esophagus (BE) results from acid and bile reflux and predisposes to cancer. We investigated the effect of bile salts, with or without acid, on cell proliferation in BE and assessed mechanism(s) involved. To mimic physiological conditions, biopsies of esophagus, BE, and duodenum were exposed to a bile salt mixture, either continuously or as a 1-h pulse, and were compared with control media without bile salts (pH 7.4) for ≤24 h. Similar experiments were also performed with acidified media (pH 3.5) combined with the bile salt mixture as a 1-h pulse. Cell proliferation was assessed by a [ 3 H]thymidine incorporation assay with or without bisindolylmaleimide (BIM), a selective protein kinase C inhibitor. Bile salt pulses enhanced cell proliferation in BE without affecting cell proliferation in esophageal or duodenal epithelia. In the presence of BIM, there was complete obliteration of the bile salt-induced BE hyperproliferation. In contrast, 1-h pulses of bile salts in combination with acid significantly inhibited proliferation in BE but had no effect on esophagus or duodenum. We conclude that in BE explants, brief exposure to bile salts, in the absence of acid, increases proliferation, whereas exposure to a combination of bile salts and acid together inhibits proliferation.
    Type of Medium: Online Resource
    ISSN: 0193-1857 , 1522-1547
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2000
    detail.hit.zdb_id: 1477329-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Physiological Society ; 2023
    In:  American Journal of Physiology-Gastrointestinal and Liver Physiology Vol. 325, No. 4 ( 2023-10-01), p. G334-G346
    In: American Journal of Physiology-Gastrointestinal and Liver Physiology, American Physiological Society, Vol. 325, No. 4 ( 2023-10-01), p. G334-G346
    Abstract: Carbamoyl phosphate synthetase 1 (CPS1) is the most abundant hepatocyte mitochondrial matrix protein. Hypoosmotic stress increases CPS1 release in isolated mouse hepatocytes without cell death. We hypothesized that increased CPS1 release during hypoosmosis is selective and associates with altered mitochondrial morphology. Both ex vivo and in vivo models were assessed. Mouse hepatocytes and livers were challenged with isotonic or hypoosmotic (35 mosM) buffer. Mice were injected intraperitoneally with water (10% body weight) with or without an antidiuretic. Mitochondrial and cytosolic fractions were isolated using differential centrifugation, then analyzed by immunoblotting to assess subcellular redistribution of four mitochondrial proteins: CPS1, ornithine transcarbamylase (OTC), pyrroline-5-carboxylate reductase 1 (PYCR1), and cytochrome c. Mitochondrial morphology alterations were examined using electron microscopy. Hypoosmotic treatment of whole livers or hepatocytes led to preferential or increased mitochondrial release, respectively, of CPS1 as compared with two mitochondrial matrix proteins (OTC/PYCR1) and with the intermembrane space protein, cytochrome c. Mitochondrial apoptosis-induced channel opening using staurosporine in hepatocytes led to preferential CPS1 and cytochrome c release. The CPS1-selective changes were accompanied by dramatic alterations in ultrastructural mitochondrial morphology. In mice, hypoosmosis/hyponatremia led to increased liver vascular congestion and increased CPS1 in bile but not blood, coupled with mitochondrial structural alterations. In contrast, isotonic increase of intravascular volume led to a decrease in mitochondrial size with limited change in bile CPS1 compared with hypoosmotic conditions and absence of the hypoosmosis-associated histological alterations. Taken together, hepatocyte CPS1 is selectively released in response to hypoosmosis/hyponatremia and provides a unique biomarker of mitochondrial injury. NEW & NOTEWORTHY Exposure of isolated mouse livers, primary cultured hepatocytes, or mice to hypoosmosis/hyponatremia conditions induces significant mitochondrial shape alterations accompanied by preferential release of the mitochondrial matrix protein CPS1, a urea cycle enzyme. In contrast, the intermembrane space protein, cytochrome c, and two other matrix proteins, including the urea cycle enzyme ornithine transcarbamylase, remain preferentially retained in mitochondria. Therefore, hepatocyte CPS1 manifests unique mitochondrial stress response compartmentalization and is a sensitive sensor of mitochondrial hypoosmotic/hyponatremic injury.
    Type of Medium: Online Resource
    ISSN: 0193-1857 , 1522-1547
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2023
    detail.hit.zdb_id: 1477329-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Physiological Society ; 2017
    In:  American Journal of Physiology-Gastrointestinal and Liver Physiology Vol. 312, No. 6 ( 2017-06-01), p. G628-G634
    In: American Journal of Physiology-Gastrointestinal and Liver Physiology, American Physiological Society, Vol. 312, No. 6 ( 2017-06-01), p. G628-G634
    Abstract: Intermediate filament proteins (IFs), such as cytoplasmic keratins in epithelial cells and vimentin in mesenchymal cells and the nuclear lamins, make up one of the three major cytoskeletal protein families. Whether in digestive organs or other tissues, IFs share several unique features including stress-inducible overexpression, abundance, cell-selective and differentiation state expression, and association with 〉 80 human diseases when mutated. Whereas most IF mutations cause disease, mutations in simple epithelial keratins 8, 18, or 19 or in lamin A/C predispose to liver disease with or without other tissue manifestations. Keratins serve major functions including protection from apoptosis, providing cellular and subcellular mechanical integrity, protein targeting to subcellular compartments, and scaffolding and regulation of cell-signaling processes. Keratins are essential for Mallory-Denk body aggregate formation that occurs in association with several liver diseases, whereas an alternate type of keratin and lamin aggregation occurs upon liver involvement in porphyria. IF-associated diseases have no known directed therapy, but high-throughput drug screening to identify potential therapies is an appealing ongoing approach. Despite the extensive current knowledge base, much remains to be discovered regarding IF physiology and pathophysiology in digestive and nondigestive organs.
    Type of Medium: Online Resource
    ISSN: 0193-1857 , 1522-1547
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2017
    detail.hit.zdb_id: 1477329-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Physiological Society ; 2014
    In:  American Journal of Physiology-Gastrointestinal and Liver Physiology Vol. 307, No. 3 ( 2014-08-01), p. G355-G364
    In: American Journal of Physiology-Gastrointestinal and Liver Physiology, American Physiological Society, Vol. 307, No. 3 ( 2014-08-01), p. G355-G364
    Abstract: Several serum markers are used to assess hepatocyte damage, but they have limitations related to etiology specificity and prognostication. Identification of novel hepatocyte-specific biomarkers could provide important prognostic information and better pathogenesis classification. We tested the hypothesis that hepatocyte-selective biomarkers are released after subjecting isolated mouse hepatocytes to Fas-ligand-mediated apoptosis. Proteomic analysis of hepatocyte culture medium identified the mitochondrial matrix protein carbamoyl phosphate synthetase-1 (CPS1) among the most readily detected proteins that are released by apoptotic hepatocytes. CPS1 was also detected in mouse serum upon acute challenge with Fas-ligand or acetaminophen and in hepatocytes upon hypoosmotic stress, independent of hepatocyte caspase activation. Furthermore, CPS1 was observed in sera of mice chronically fed the hepatotoxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine. Mouse CPS1 detectability was similar in serum and plasma, and its half-life was 126 ± 9 min. Immune staining showed that CPS1 localized to mouse hepatocytes but not ductal cells. Analysis of a few serum samples from patients with acute liver failure (ALF) due to acetaminophen, Wilson disease, or ischemia showed readily detectable CPS1 that was not observed in several patients with chronic viral hepatitis or in control donors. Notably, CPS1 rapidly decreased to undetectable levels in sera of patients with acetaminophen-related ALF who ultimately recovered, while alanine aminotransferase levels remained elevated. Therefore, CPS1 becomes readily detectable upon hepatocyte apoptotic and necrotic death in culture or in vivo. Its abundance and short serum half-life, compared with alanine aminotransferase, suggest that it may be a useful prognostic biomarker in human and mouse liver injury.
    Type of Medium: Online Resource
    ISSN: 0193-1857 , 1522-1547
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2014
    detail.hit.zdb_id: 1477329-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages