Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (52)
  • 1
    In: Infection and Immunity, American Society for Microbiology, Vol. 87, No. 7 ( 2019-07)
    Abstract: Haemophilus ducreyi causes chancroid and is a major cause of cutaneous ulcers in children. Due to environmental reservoirs, both class I and class II H. ducreyi strains persist in cutaneous ulcer regions of endemicity following mass drug administration of azithromycin, suggesting the need for a vaccine. The hemoglobin receptor (HgbA) is a leading vaccine candidate, but its efficacy in animal models is class specific. Controlled human infection models can be used to evaluate vaccines, but only a class I strain (35000HP) has been characterized in this model. As a prelude to evaluating HgbA vaccines in the human model, we tested here whether a derivative of 35000HP containing a class II hgbA allele (FX548) is as virulent as 35000HP in humans. In eight volunteers infected at three sites with each strain, the papule formation rate was 95.8% for 35000HP versus 62.5% for FX548 ( P  = 0.021). Excluding doses of FX548 that were ≥2-fold higher than those of 35000HP, the pustule formation rate was 25% for 35000HP versus 11.7% for FX548 ( P  = 0.0053). By Western blot analysis, FX548 and 35000HP expressed equivalent amounts of HgbA in whole-cell lysates and outer membranes. The growth of FX548 and 35000HP was similar in media containing hemoglobin or hemin. By whole-genome sequencing and single-nucleotide polymorphism analysis, FX548 contained no mutations in open reading frames other than hgbA . We conclude that by an unknown mechanism, FX548 is partially attenuated in humans and is not a suitable strain for HgbA vaccine efficacy trials in the model.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 1483247-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: mBio, American Society for Microbiology, Vol. 10, No. 3 ( 2019-06-25)
    Abstract: A major gap in understanding infectious diseases is the lack of information about molecular interaction networks between pathogens and the human host. Haemophilus ducreyi causes the genital ulcer disease chancroid in adults and is a leading cause of cutaneous ulcers in children in the tropics. We developed a model in which human volunteers are infected on the upper arm with H. ducreyi until they develop pustules. To define the H. ducreyi and human interactome, we determined bacterial and host transcriptomic and host metabolomic changes in pustules. We found that in vivo H. ducreyi transcripts were distinct from those in the inocula, as were host transcripts in pustule and wounded control sites. Many of the upregulated H. ducreyi genes were found to be involved in ascorbic acid and anaerobic metabolism and inorganic ion/nutrient transport. The top 20 significantly expressed human pathways showed that all were involved in immune responses. We generated a bipartite network for interactions between host and bacterial gene transcription; multiple positively correlated networks contained H. ducreyi genes involved in anaerobic metabolism and host genes involved with the immune response. Metabolomic studies showed that pustule and wounded samples had different metabolite compositions; the top ion pathway involved ascorbate and aldarate metabolism, which correlated with the H. ducreyi transcriptional response and upregulation of host genes involved in ascorbic acid recycling. These data show that an interactome exists between H. ducreyi and the human host and suggest that H. ducreyi exploits the metabolic niche created by the host immune response. IMPORTANCE Dual RNA sequencing (RNA-seq) offers the promise of determining an interactome at a transcriptional level between a bacterium and the host but has yet to be done on any bacterial infection in human tissue. We performed dual RNA-seq and metabolomics analyses on wounded and infected sites following experimental infection of the arm with H. ducreyi . Our results suggest that H. ducreyi survives in an abscess by utilizing l -ascorbate as an alternative carbon source, possibly taking advantage of host ascorbic acid recycling, and that H. ducreyi also adapts by upregulating genes involved in anaerobic metabolism and inorganic ion and nutrient transport. To our knowledge, this is the first description of an interaction network between a bacterium and the human host at a site of infection.
    Type of Medium: Online Resource
    ISSN: 2161-2129 , 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 2557172-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Infection and Immunity, American Society for Microbiology, Vol. 85, No. 9 ( 2017-09)
    Abstract: During infection, Neisseria gonorrhoeae senses and responds to stress; such responses may be modulated by MisRS (NGO0177 and NGO0176), a two-component system that is a homolog of CpxRA. In Escherichia coli , CpxRA senses and responds to envelope stress; CpxA is a sensor kinase/phosphatase for CpxR, a response regulator. When a cpxA mutant is grown in medium containing glucose, CpxR is phosphorylated by acetyl phosphate but cannot be dephosphorylated, resulting in constitutive activation. Kandler and coworkers (J. L. Kandler, C. L. Holley, J. L. Reimche, V. Dhulipala, J. T. Balthazar, A. Muszyński, R. W. Carlson, and W. M. Shafer, Antimicrob Agents Chemother 60:4690–4700, 2016, https://doi.org/10.1128/AAC.00823-16 ) showed that MisR (CpxR) is required for the maintenance of membrane integrity and resistance to antimicrobial peptides, suggesting a role in gonococcal survival in vivo . Here, we evaluated the contributions of MisR and MisS (CpxA) to gonococcal infection in a murine model of cervicovaginal colonization and identified MisR-regulated genes using RNA sequencing (RNA-Seq). The deletion of misR or misS severely reduced the capacity of N. gonorrhoeae to colonize mice or maintain infection over a 7-day period and reduced microbial fitness after exposure to heat shock. Compared to the wild type (WT), the inactivation of misR identified 157 differentially regulated genes, most of which encoded putative envelope proteins. The inactivation of misS identified 17 differentially regulated genes compared to the WT and 139 differentially regulated genes compared to the misR mutant, 111 of which overlapped those differentially expressed in the comparison of the WT versus the misR mutant. These data indicate that an intact MisRS system is required for gonococcal infection of mice. Provided the MisR is constitutively phosphorylated in the misS mutant, the data suggest that controlled but not constitutive activation is required for gonococcal infection in mice.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2017
    detail.hit.zdb_id: 1483247-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Infection and Immunity, American Society for Microbiology, Vol. 81, No. 2 ( 2013-02), p. 608-617
    Abstract: The carbon storage regulator A (CsrA) controls a wide variety of bacterial processes, including metabolism, adherence, stress responses, and virulence. Haemophilus ducreyi , the causative agent of chancroid, harbors a homolog of csrA . Here, we generated an unmarked, in-frame deletion mutant of csrA to assess its contribution to H. ducreyi pathogenesis. In human inoculation experiments, the csrA mutant was partially attenuated for pustule formation compared to its parent. Deletion of csrA resulted in decreased adherence of H. ducreyi to human foreskin fibroblasts (HFF); Flp1 and Flp2, the determinants of H. ducreyi adherence to HFF cells, were downregulated in the csrA mutant. Compared to its parent, the csrA mutant had a significantly reduced ability to tolerate oxidative stress and heat shock. The enhanced sensitivity of the mutant to oxidative stress was more pronounced in bacteria grown to stationary phase compared to that in bacteria grown to mid-log phase. The csrA mutant also had a significant survival defect within human macrophages when the bacteria were grown to stationary phase but not to mid-log phase. Complementation in trans partially or fully restored the mutant phenotypes. These data suggest that CsrA contributes to virulence by multiple mechanisms and that these contributions may be more profound in bacterial cell populations that are not rapidly dividing in the human host.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2013
    detail.hit.zdb_id: 1483247-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: mBio, American Society for Microbiology, Vol. 14, No. 1 ( 2023-02-28)
    Type of Medium: Online Resource
    ISSN: 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2023
    detail.hit.zdb_id: 2557172-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: mBio, American Society for Microbiology, Vol. 13, No. 6 ( 2022-12-20)
    Abstract: Few studies have investigated host-bacterial interactions at sites of infection in humans using transcriptomics and metabolomics. Haemophilus ducreyi causes cutaneous ulcers in children and the genital ulcer disease chancroid in adults. We developed a human challenge model in which healthy adult volunteers are infected with H. ducreyi on the upper arm until they develop pustules. Here, we characterized host-pathogen interactions in pustules using transcriptomics and metabolomics and examined interactions between the host transcriptome and metabolome using integrated omics. In a previous pilot study, we determined the human and H. ducreyi transcriptomes and the metabolome of pustule and wounded sites of 4 volunteers (B. Griesenauer, T. M. Tran, K. R. Fortney, D. M. Janowicz, et al., mBio 10:e01193-19, 2019, https://doi.org/10.1128/mBio.01193-19 ). While we could form provisional transcriptional networks between the host and H. ducreyi , the study was underpowered to integrate the metabolome with the host transcriptome. To better define and integrate the transcriptomes and metabolome, we used samples from both the pilot study ( n  = 4) and new volunteers ( n  = 8) to identify 5,495 human differentially expressed genes (DEGs), 123 H. ducreyi DEGs, 205 differentially abundant positive ions, and 198 differentially abundant negative ions. We identified 42 positively correlated and 29 negatively correlated human- H. ducreyi transcriptome clusters. In addition, we defined human transcriptome-metabolome networks consisting of 9 total clusters, which highlighted changes in fatty acid metabolism and mitigation of oxidative damage. Taken together, the data suggest a mixed pro- and anti-inflammatory environment and rewired central metabolism in the host that provides a hostile, nutrient-limited environment for H. ducreyi . IMPORTANCE Interactions between the host and bacteria at sites of infection in humans are poorly understood. We inoculated human volunteers on the upper arm with the skin pathogen H. ducreyi or a buffer control and biopsied the resulting infected and sham-inoculated sites. We performed dual transcriptome sequencing (RNA-seq) and metabolic analysis on the biopsy samples. Network analyses between the host and bacterial transcriptomes and the host transcriptome-metabolome network were used to identify molecules that may be important for the virulence of H. ducreyi in the human host. Our results suggest that the pustule is highly oxidative, contains both pro- and anti-inflammatory components, and causes metabolic shifts in the host, to which H. ducreyi adapts to survive. To our knowledge, this is the first study to integrate transcriptomic and metabolomic responses to a single bacterial pathogen in the human host.
    Type of Medium: Online Resource
    ISSN: 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 2557172-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Infection and Immunity, American Society for Microbiology, Vol. 81, No. 11 ( 2013-11), p. 4160-4170
    Abstract: Expression of the lspB-lspA2 operon encoding a virulence-related two-partner secretion system in Haemophilus ducreyi 35000HP is directly regulated by the CpxRA regulatory system (M. Labandeira-Rey, J. R. Mock, and E. J. Hansen, Infect. Immun. 77:3402–3411, 2009). In the present study, we show that this secretion system is also regulated by the small nucleoid-associated protein Fis. Inactivation of the H. ducreyi fis gene resulted in a reduction in expression of both the H. ducreyi LspB and LspA2 proteins. DNA microarray experiments showed that a H. ducreyi fis deletion mutant exhibited altered expression levels of genes encoding other important H. ducreyi virulence factors, including DsrA and Flp1, suggesting a possible global role for Fis in the control of virulence in this obligate human pathogen. While the H. ducreyi Fis protein has a high degree of sequence and structural similarity to the Fis proteins of other bacteria, its temporal pattern of expression was very different from that of enterobacterial Fis proteins. The use of a lacZ -based transcriptional reporter provided evidence which indicated that the H. ducreyi Fis homolog is a positive regulator of gyrB , a gene that is negatively regulated by Fis in enteric bacteria. Taken together, the Fis protein expression data and the observed regulatory effects of Fis in H. ducreyi suggest that this small DNA binding protein has a regulatory role in H. ducreyi which may differ in substantial ways from that of other Fis proteins.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2013
    detail.hit.zdb_id: 1483247-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Society for Microbiology ; 2001
    In:  Infection and Immunity Vol. 69, No. 7 ( 2001-07), p. 4224-4231
    In: Infection and Immunity, American Society for Microbiology, Vol. 69, No. 7 ( 2001-07), p. 4224-4231
    Abstract: Haemophilus ducreyi is the etiologic agent of chancroid, a sexually transmitted genital ulcer disease that facilitates the transmission of human immunodeficiency virus. In the human model of infection, the histopathology of infected sites in part resembles a delayed-type hypersensitivity (DTH) response. In this study, T cells were isolated from skin biopsy specimens obtained from 24 subjects who were infected for 7 to 14 days. One clone and 12 lines that responded to H. ducreyi antigens were obtained from 12 of the subjects. Fluorescence-activated cell sorter analysis showed that the antigen-responsive lines and clone were predominantly CD3 + and CD4 + . The lines and clone responded to H. ducreyi antigen in a dose-dependent manner and produced gamma interferon (IFN-γ) alone or IFN-γ and interleukin-10 (IL-10) but no IL-4 or IL-5 in response to H. ducreyi . Proliferation of T cells was dependent on the presence of autologous antigen-presenting cells. The lines showed little response to antigens prepared from other members of the Pasteurellaceae and responded to different fractions of H. ducreyi separated by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. We conclude that T cells that recognize H. ducreyi antigens are recruited to sites experimentally infected with the organism. The lack of cross-reactivity to the Pasteurellaceae and the response of the lines to different antigen fractions suggest that subjects are sensitized to H. ducreyi during the course of infection.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2001
    detail.hit.zdb_id: 1483247-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Infection and Immunity, American Society for Microbiology, Vol. 78, No. 3 ( 2010-03), p. 1176-1184
    Abstract: Haemophilus ducreyi is an extracellular pathogen of human epithelial surfaces that resists human antimicrobial peptides (APs). The organism's genome contains homologs of genes s ensitive to a ntimicrobial p eptides ( sap operon) in nontypeable Haemophilus influenzae . In this study, we characterized the sap -containing loci of H. ducreyi 35000HP and demonstrated that sapA is expressed in broth cultures and H. ducreyi -infected tissue; sapA is also conserved among both class I and class II H. ducreyi strains. We constructed a nonpolar sapA mutant of H. ducreyi 35000HP, designated 35000HP sapA , and compared the percent survival of wild-type 35000HP and 35000HP sapA exposed to several human APs, including α-defensins, β-defensins, and the cathelicidin LL-37. Unlike an H. influenzae sapA mutant, strain 35000HP sapA was not more susceptible to defensins than strain 35000HP was. However, we observed a significant decrease in the survival of strain 35000HP sapA after exposure to LL-37, which was complemented by introducing sapA in trans . Thus, the Sap transporter plays a role in resistance of H. ducreyi to LL-37. We next compared mutant strain 35000HP sapA with strain 35000HP for their ability to cause disease in human volunteers. Although both strains caused papules to form at similar rates, the pustule formation rate at sites inoculated with 35000HP sapA was significantly lower than that of sites inoculated with 35000HP (33.3% versus 66.7%; P = 0.007). Together, these data establish that SapA acts as a virulence factor and as one mechanism for H. ducreyi to resist killing by antimicrobial peptides. To our knowledge, this is the first demonstration that an antimicrobial peptide resistance mechanism contributes to bacterial virulence in humans.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2010
    detail.hit.zdb_id: 1483247-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Infection and Immunity, American Society for Microbiology, Vol. 78, No. 9 ( 2010-09), p. 3898-3904
    Abstract: Haemophilus ducreyi must adapt to the environment of the human host to establish and maintain infection in the skin. Bacteria generally utilize stress response systems, such as the CpxRA two-component system, to adapt to hostile environments. CpxRA is the only obvious two-component system contained in the H. ducreyi genome and negatively regulates the lspB-lspA2 operon, which encodes proteins that enable the organism to resist phagocytosis. We constructed an unmarked, in-frame H. ducreyi cpxA deletion mutant, 35000HPΔ cpxA . In human inoculation experiments, 35000HPΔ cpxA formed papules at a rate and size that were significantly less than its parent and was unable to form pustules compared to the parent. CpxA usually has kinase and phosphatase activities for CpxR, and the deletion of CpxA leads to the accumulation of activated CpxR due to the loss of phosphatase activity and the ability of CpxR to accept phosphate groups from other donors. Using a reporter construct, the lspB-lspA2 promoter was downregulated in 35000HPΔ cpxA , confirming that CpxR was activated. Deletion of cpxA downregulated DsrA, the major determinant of serum resistance in the organism, causing the mutant to become serum susceptible. Complementation in trans restored parental phenotypes. 35000HPΔ cpxA is the first H. ducreyi mutant that is impaired in its ability to form both papules and pustules in humans. Since a major function of CpxRA is to control the flow of protein traffic across the periplasm, uncontrolled activation of this system likely causes dysregulated expression of multiple virulence determinants and cripples the ability of the organism to adapt to the host.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2010
    detail.hit.zdb_id: 1483247-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages