Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • American Society for Microbiology  (120)
  • 1
    In: mBio, American Society for Microbiology, Vol. 9, No. 1 ( 2018-03-07)
    Kurzfassung: There is an urgent need for strong, biocompatible bioadhesives that perform underwater. To strongly adhere to surfaces and resist flow underwater, the bacterium Caulobacter crescentus produces an adhesive called the holdfast, the mechanochemistry of which remains undefined. We show that the holdfast is a layered structure with a stiff core layer and a polymeric brush layer and consists of polysaccharides, polypeptides, and DNA. The DNA appears to play a role in the structure of the brush layer and initial adhesion, the peptides in adhesive strength, and the polysaccharides in the structure of the core. The complex, multilayer organization and diverse chemistry described here underlie the distinctive adhesive properties of the holdfast and will provide important insights into the mechanisms of bacterial adhesion and bioadhesive applications.
    Materialart: Online-Ressource
    ISSN: 2161-2129 , 2150-7511
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2018
    ZDB Id: 2557172-2
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    American Society for Microbiology ; 2018
    In:  Journal of Bacteriology Vol. 200, No. 9 ( 2018-05)
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 200, No. 9 ( 2018-05)
    Kurzfassung: Chemoreceptors are localized at the cell poles of Escherichia coli and other rod-shaped bacteria. Over the years, different mechanisms have been put forward to explain this polar localization, including stochastic clustering, membrane curvature-driven localization, interactions with the Tol-Pal complex, and nucleoid exclusion. To evaluate these mechanisms, we monitored the cellular localization of the aspartate chemoreceptor Tar in different deletion mutants. We did not find any indication for either stochastic cluster formation or nucleoid exclusion. However, the presence of a functional Tol-Pal complex appeared to be essential to retain Tar at the cell poles. Interestingly, Tar still accumulated at midcell in tol and in pal deletion mutants. In these mutants, the protein appears to gather at the base of division septa, a region characterized by strong membrane curvature. Chemoreceptors, like Tar, form trimers of dimers that bend the cell membrane due to a rigid tripod structure. The curvature approaches the curvature of the cell membrane generated during cell division, and localization of chemoreceptor tripods at curved membrane areas is therefore energetically favorable, as it lowers membrane tension. Indeed, when we introduced mutations in Tar that abolish the rigid tripod structure, the protein was no longer able to accumulate at midcell or the cell poles. These findings favor a model where chemoreceptor localization in E. coli is driven by strong membrane curvature and association with the Tol-Pal complex. IMPORTANCE Bacteria have exquisite mechanisms to sense and adapt to the environment they live in. One such mechanism involves the chemotaxis signal transduction pathway, in which chemoreceptors specifically bind certain attracting or repelling molecules and transduce the signals to the cell. In different rod-shaped bacteria, these chemoreceptors localize specifically to cell poles. Here, we examined the polar localization of the aspartate chemoreceptor Tar in E. coli and found that membrane curvature at cell division sites and the Tol-Pal protein complex localize Tar at cell division sites, the future cell poles. This study shows how membrane curvature can guide localization of proteins in a cell.
    Materialart: Online-Ressource
    ISSN: 0021-9193 , 1098-5530
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2018
    ZDB Id: 1481988-0
    SSG: 12
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    American Society for Microbiology ; 2020
    In:  Journal of Bacteriology Vol. 202, No. 9 ( 2020-04-09)
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 202, No. 9 ( 2020-04-09)
    Kurzfassung: Chlamydiae lack the conserved central coordinator protein of cell division FtsZ, a tubulin-like homolog. Current evidence indicates that Chlamydia uses the actin-like homolog, MreB, to substitute for the role of FtsZ in a polarized division mechanism. Interestingly, we observed MreB as a ring at the septum in dividing cells of Chlamydia . We hypothesize that MreB, to substitute for FtsZ in Chlamydia , must possess unique properties compared to canonical MreB orthologs. Sequence differences between chlamydial MreB and orthologs in other bacteria revealed that chlamydial MreB possesses an extended N-terminal region, harboring predicted amphipathicity, as well as the conserved amphipathic helix found in other bacterial MreBs. The conserved amphipathic helix-directed green fluorescent protein (GFP) to label the membrane uniformly in Escherichia coli but the extended N-terminal region did not. However, the extended N-terminal region together with the conserved amphipathic region directed GFP to restrict the membrane label to the cell poles. In Chlamydia , the extended N-terminal region was sufficient to direct GFP to the membrane, and this localization was independent of an association with endogenous MreB. Importantly, mutating the extended N-terminal region to reduce its amphipathicity resulted in the accumulation of GFP in the cytosol of the chlamydiae and not in the membrane. The N-terminal domain of MreB was not required for homotypic interactions but was necessary for interactions with cell division components RodZ and FtsK. Our data provide mechanistic support for chlamydial MreB to serve as a substitute for FtsZ by forming a ringlike structure at the site of polarized division. IMPORTANCE Chlamydia trachomatis is an obligate intracellular pathogen, causing sexually transmitted diseases and trachoma. The study of chlamydial physiology is important for developing novel therapeutic strategies for these diseases. Chlamydiae divide by a unique MreB-dependent polarized cell division process. In this study, we investigated unique properties of chlamydial MreB and observed that chlamydial species harbor an extended N-terminal region possessing amphipathicity. MreB formed a ring at the septum, like FtsZ in Escherichia coli , and its localization was dependent upon the amphipathic nature of its extended N terminus. Furthermore, this region is crucial for the interaction of MreB with cell division proteins. Given these results, chlamydial MreB likely functions at the septum as a scaffold for divisome proteins to regulate cell division in this organism.
    Materialart: Online-Ressource
    ISSN: 0021-9193 , 1098-5530
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2020
    ZDB Id: 1481988-0
    SSG: 12
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    American Society for Microbiology ; 2020
    In:  Journal of Bacteriology Vol. 202, No. 13 ( 2020-06-09)
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 202, No. 13 ( 2020-06-09)
    Kurzfassung: Flagellar gene expression is bimodal in Salmonella enterica . Under certain growth conditions, some cells express the flagellar genes whereas others do not. This results in mixed populations of motile and nonmotile cells. In the present study, we found that two independent mechanisms control bimodal expression of the flagellar genes. One was previously found to result from a double negative-feedback loop involving the flagellar regulators RflP and FliZ. This feedback loop governs bimodal expression of class 2 genes. In this work, a second mechanism was found to govern bimodal expression of class 3 genes. In particular, class 3 gene expression is still bimodal, even when class 2 gene expression is not. Using a combination of experimental and modeling approaches, we found that class 3 bimodality results from the σ 28 -FlgM developmental checkpoint. IMPORTANCE Many bacterial use flagella to swim in liquids and swarm over surface. In Salmonella enterica , over 50 genes are required to assemble flagella. The expression of these genes is tightly regulated. Previous studies have found that flagellar gene expression is bimodal in S. enterica , which means that only a fraction of cells express flagellar genes and are motile. In the present study, we found that two separate mechanisms induce this bimodal response. One mechanism, which was previously identified, tunes the fraction of motile cells in response to nutrients. The other results from a developmental checkpoint that couples flagellar gene expression to flagellar assembly. Collectively, these results further our understanding of how flagellar gene expression is regulated in S. enterica .
    Materialart: Online-Ressource
    ISSN: 0021-9193 , 1098-5530
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2020
    ZDB Id: 1481988-0
    SSG: 12
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    American Society for Microbiology ; 2021
    In:  Journal of Bacteriology Vol. 203, No. 16 ( 2021-07-22)
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 203, No. 16 ( 2021-07-22)
    Kurzfassung: Bacterial flagella are the best-known rotational organelles in the biological world. The spiral-shaped flagellar filaments that extend from the cell surface rotate like a screw to create a propulsive force. At the base of the flagellar filament lies a protein motor that consists of a stator and a rotor embedded in the membrane. The stator is composed of two types of membrane subunits, PomA (similar to MotA in Escherichia coli ) and PomB (similar to MotB in E. coli ), which are energy converters that assemble around the rotor to couple rotation with the ion flow. Recently, stator structures, where two MotB molecules are inserted into the center of a ring made of five MotA molecules, were reported. This structure inspired a model in which the MotA ring rotates around the MotB dimer in response to ion influx. Here, we focus on the Vibrio PomB plug region, which is involved in flagellar motor activation. We investigated the plug region using site-directed photo-cross-linking and disulfide cross-linking experiments. Our results demonstrated that the plug interacts with the extracellular short loop region of PomA, which is located between transmembrane helices 3 and 4. Although the motor stopped rotating after cross-linking, its function recovered after treatment with a reducing reagent that disrupted the disulfide bond. Our results support the hypothesis, which has been inferred from the stator structure, that the plug region terminates the ion influx by blocking the rotation of the rotor as a spanner. IMPORTANCE The biological flagellar motor resembles a mechanical motor. It is composed of a stator and a rotor. The force is transmitted to the rotor by the gear-like stator movements. It has been proposed that the pentamer of MotA subunits revolves around the axis of the B subunit dimer in response to ion flow. The plug region of the B subunit regulates the ion flow. Here, we demonstrated that the ion flow was terminated by cross-linking the plug region of PomB with PomA. These findings support the rotation hypothesis and explain the role of the plug region in blocking the rotation of the stator unit.
    Materialart: Online-Ressource
    ISSN: 0021-9193 , 1098-5530
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2021
    ZDB Id: 1481988-0
    SSG: 12
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    American Society for Microbiology ; 2021
    In:  Journal of Bacteriology Vol. 203, No. 21 ( 2021-10-12)
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 203, No. 21 ( 2021-10-12)
    Kurzfassung: Acinetobacter baumannii is emerging as a multidrug-resistant (MDR) nosocomial pathogen of increasing threat to human health worldwide. The recent MDR urinary isolate UPAB1 carries the plasmid pAB5, a member of a family of large conjugative plasmids (LCPs). LCPs encode several antibiotic resistance genes and repress the type VI secretion system (T6SS) to enable their dissemination, employing two TetR transcriptional regulators. Furthermore, pAB5 controls the expression of additional chromosomally encoded genes, impacting UPAB1 virulence. Here, we show that a pAB5-encoded H-NS transcriptional regulator represses the synthesis of the exopolysaccharide PNAG and the expression of a previously uncharacterized three-gene cluster that encodes a protein belonging to the CsgG/HfaB family. Members of this protein family are involved in amyloid or polysaccharide formation in other species. Deletion of the CsgG homolog abrogated PNAG production and chaperone-usher pathway (CUP) pilus formation, resulting in a subsequent reduction in biofilm formation. Although this gene cluster is widely distributed in Gram-negative bacteria, it remains largely uninvestigated. Our results illustrate the complex cross-talks that take place between plasmids and the chromosomes of their bacterial host, which in this case can contribute to the pathogenesis of Acinetobacter . IMPORTANCE The opportunistic human pathogen Acinetobacter baumannii displays the highest reported rates of multidrug resistance among Gram-negative pathogens. Many A. baumannii strains carry large conjugative plasmids like pAB5. In recent years, we have witnessed an increase in knowledge about the regulatory cross-talks between plasmids and bacterial chromosomes. Here, we show that pAB5 controls the composition of the bacterial extracellular matrix, resulting in a drastic reduction in biofilm formation. The association between biofilm formation, virulence, and antibiotic resistance is well documented. Therefore, understanding the factors involved in the regulation of biofilm formation in Acinetobacter has remarkable therapeutic potential.
    Materialart: Online-Ressource
    ISSN: 0021-9193 , 1098-5530
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2021
    ZDB Id: 1481988-0
    SSG: 12
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 203, No. 24 ( 2021-11-19)
    Kurzfassung: The alphaproteobacterium Sinorhizobium meliloti secretes two acidic exopolysaccharides (EPSs), succinoglycan (EPSI) and galactoglucan (EPSII), which differentially enable it to adapt to a changing environment. Succinoglycan is essential for invasion of plant hosts and, thus, for the formation of nitrogen-fixing root nodules. Galactoglucan is critical for population-based behaviors such as swarming and biofilm formation and can facilitate invasion in the absence of succinoglycan on some host plants. The biosynthesis of galactoglucan is not as completely understood as that of succinoglycan. We devised a pipeline to identify putative pyruvyltransferase and acetyltransferase genes, construct genomic deletions in strains engineered to produce either succinoglycan or galactoglucan, and analyze EPS from mutant bacterial strains. EPS samples were examined by 13 C cross-polarization magic-angle spinning (CPMAS) solid-state nuclear magnetic resonance (NMR). CPMAS NMR is uniquely suited to defining chemical composition in complex samples and enables the detection and quantification of distinct EPS functional groups. Galactoglucan was isolated from mutant strains with deletions in five candidate acyl/acetyltransferase genes ( exoZ , exoH , SMb20810 , SMb21188 , and SMa1016 ) and a putative pyruvyltransferase ( wgaE or SMb21322 ). Most samples were similar in composition to wild-type EPSII by CPMAS NMR analysis. However, galactoglucan produced from a strain lacking wgaE exhibited a significant reduction in pyruvylation. Pyruvylation was restored through the ectopic expression of plasmid-borne wgaE . Our work has thus identified WgaE as a galactoglucan pyruvyltransferase. This exemplifies how the systematic combination of genetic analyses and solid-state NMR detection is a rapid means to identify genes responsible for modification of rhizobial exopolysaccharides. IMPORTANCE Nitrogen-fixing bacteria are crucial for geochemical cycles and global nitrogen nutrition. Symbioses between legumes and rhizobial bacteria establish root nodules, where bacteria convert dinitrogen to ammonia for plant utilization. Secreted exopolysaccharides (EPSs) produced by Sinorhizobium meliloti (succinoglycan and galactoglucan) play important roles in soil and plant environments. The biosynthesis of galactoglucan is not as well characterized as that of succinoglycan. We employed solid-state nuclear magnetic resonance (NMR) to examine intact EPS from wild-type and mutant S. meliloti strains. NMR analysis of EPS isolated from a wgaE gene mutant revealed a novel pyruvyltransferase that modifies galactoglucan. Few EPS pyruvyltransferases have been characterized. Our work provides insight into the biosynthesis of an important S. meliloti EPS and expands the knowledge of enzymes that modify polysaccharides.
    Materialart: Online-Ressource
    ISSN: 0021-9193 , 1098-5530
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2021
    ZDB Id: 1481988-0
    SSG: 12
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    American Society for Microbiology ; 2021
    In:  Journal of Bacteriology Vol. 203, No. 3 ( 2021-01-11)
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 203, No. 3 ( 2021-01-11)
    Kurzfassung: Cellulose is a widespread component of bacterial biofilms, where its properties of exceptional water retention, high tensile strength, and stiffness prevent dehydration and mechanical disruption of the biofilm. Bacteria in the genus Gluconacetobacter secrete crystalline cellulose, with a structure very similar to that found in plant cell walls. How this higher-order structure is produced is poorly understood. We used cryo-electron tomography and focused-ion-beam milling of native bacterial biofilms to image cellulose-synthesizing Gluconacetobacter hansenii and Gluconacetobacter xylinus bacteria in a frozen-hydrated, near-native state. We confirm previous results suggesting that cellulose crystallization occurs serially following its secretion along one side of the cell, leading to a cellulose ribbon that can reach several micrometers in length and combine with ribbons from other cells to form a robust biofilm matrix. We were able to take direct measurements in a near-native state of the cellulose sheets. Our results also reveal a novel cytoskeletal structure, which we have named the cortical belt, adjacent to the inner membrane and underlying the sites where cellulose is seen emerging from the cell. We found that this structure is not present in other cellulose-synthesizing bacterial species, Agrobacterium tumefaciens and Escherichia coli 1094, which do not produce organized cellulose ribbons. We therefore propose that the cortical belt holds the cellulose synthase complexes in a line to form higher-order cellulose structures, such as sheets and ribbons. IMPORTANCE This work’s relevance for the microbiology community is twofold. It delivers for the first time high-resolution near-native snapshots of Gluconacetobacter spp. (previously Komagataeibacter spp.) in the process of cellulose ribbon synthesis, in their native biofilm environment. It puts forward a noncharacterized cytoskeleton element associated with the side of the cell where the cellulose synthesis occurs. This represents a step forward in the understanding of the cell-guided process of crystalline cellulose synthesis, studied specifically in the Gluconacetobacter genus and still not fully understood. Additionally, our successful attempt to use cryo-focused-ion-beam milling through biofilms to image the cells in their native environment will drive the community to use this tool for the morphological characterization of other studied biofilms.
    Materialart: Online-Ressource
    ISSN: 0021-9193 , 1098-5530
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2021
    ZDB Id: 1481988-0
    SSG: 12
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Online-Ressource
    Online-Ressource
    American Society for Microbiology ; 2021
    In:  Journal of Bacteriology Vol. 203, No. 10 ( 2021-04-21)
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 203, No. 10 ( 2021-04-21)
    Kurzfassung: Polyamines are essential for biofilm formation in Escherichia coli , but it is still unclear which polyamines are primarily responsible for this phenomenon. To address this issue, we constructed a series of E. coli K-12 strains with mutations in genes required for the synthesis and metabolism of polyamines. Disruption of the spermidine synthase gene ( speE ) caused a severe defect in biofilm formation. This defect was rescued by the addition of spermidine to the medium but not by putrescine or cadaverine. A multidrug/spermidine efflux pump membrane subunit (MdtJ)-deficient strain was anticipated to accumulate more spermidine and result in enhanced biofilm formation compared to the MdtJ + strain. However, the mdtJ mutation did not affect intracellular spermidine or biofilm concentrations. E. coli has the spermidine acetyltransferase (SpeG) and glutathionylspermidine synthetase/amidase (Gss) to metabolize intracellular spermidine. Under biofilm-forming conditions, not Gss but SpeG plays a major role in decreasing the too-high intracellular spermidine concentrations. Additionally, PotFGHI can function as a compensatory importer of spermidine when PotABCD is absent under biofilm-forming conditions. Last, we report here that, in addition to intracellular spermidine, the periplasmic binding protein (PotD) of the spermidine preferential ABC transporter is essential for stimulating biofilm formation. IMPORTANCE Previous reports have speculated on the effect of polyamines on bacterial biofilm formation. However, the regulation of biofilm formation by polyamines in Escherichia coli has not yet been assessed. The identification of polyamines that stimulate biofilm formation is important for developing novel therapies for biofilm-forming pathogens. This study sheds light on biofilm regulation in E. coli . Our findings provide conclusive evidence that only spermidine can stimulate biofilm formation in E. coli cells, not putrescine or cadaverine. Last, Δ potD inhibits biofilm formation even though the spermidine is synthesized inside the cells from putrescine. Since PotD is significant for biofilm formation and there is no ortholog of the PotABCD transporter in humans, PotD could be a target for the development of biofilm inhibitors.
    Materialart: Online-Ressource
    ISSN: 0021-9193 , 1098-5530
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2021
    ZDB Id: 1481988-0
    SSG: 12
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Online-Ressource
    Online-Ressource
    American Society for Microbiology ; 2021
    In:  Journal of Bacteriology Vol. 203, No. 10 ( 2021-04-21)
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 203, No. 10 ( 2021-04-21)
    Kurzfassung: Bacteria adopt a wide variety of sizes and shapes, with many species exhibiting stereotypical morphologies. How morphology changes, and over what timescales, is less clear. Previous work examining cell morphology in an experiment with Escherichia coli showed that populations evolved larger cells and, in some cases, cells that were less rod-like. That experiment has now run for over two more decades. Meanwhile, genome sequence data are available for these populations, and new computational methods enable high-throughput microscopic analyses. In this study, we measured stationary-phase cell volumes for the ancestor and 12 populations at 2,000, 10,000, and 50,000 generations, including measurements during exponential growth at the last time point. We measured the distribution of cell volumes for each sample using a Coulter counter and microscopy, the latter of which also provided data on cell shape. Our data confirm the trend toward larger cells while also revealing substantial variation in size and shape across replicate populations. Most populations first evolved wider cells but later reverted to the ancestral length-to-width ratio. All but one population evolved mutations in rod shape maintenance genes. We also observed many ghost-like cells in the only population that evolved the novel ability to grow on citrate, supporting the hypothesis that this lineage struggles with maintaining balanced growth. Lastly, we show that cell size and fitness remain correlated across 50,000 generations. Our results suggest that larger cells are beneficial in the experimental environment, while the reversion toward ancestral length-to-width ratios suggests partial compensation for the less favorable surface area-to-volume ratios of the evolved cells. IMPORTANCE Bacteria exhibit great morphological diversity, yet we have only a limited understanding of how their cell sizes and shapes evolve and of how these features affect organismal fitness. This knowledge gap reflects, in part, the paucity of the fossil record for bacteria. In this study, we revived and analyzed samples extending over 50,000 generations from 12 populations of experimentally evolving Escherichia coli to investigate the relation between cell size, shape, and fitness. Using this “frozen fossil record,” we show that all 12 populations evolved larger cells concomitant with increased fitness, with substantial heterogeneity in cell size and shape across the replicate lines. Our work demonstrates that cell morphology can readily evolve and diversify, even among populations living in identical environments.
    Materialart: Online-Ressource
    ISSN: 0021-9193 , 1098-5530
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2021
    ZDB Id: 1481988-0
    SSG: 12
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz