Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: International Review of Hydrobiology, Wiley, Vol. 105, No. 3-4 ( 2020-06), p. 63-73
    Abstract: A key research aim for lotic ecosystems is the identification of natural and anthropogenic pressures that impact ecosystem status and functions. As a consequence of these perturbations, many lotic ecosystems are exposed to complex combinations of nonchemical and chemical stressors. These stressors comprise temperature fluctuations, flow alterations, elevated solute loads or xenobiotics, and all these factors can pose stress upon aquatic ecosystems on different temporal, spatial and biological scales. Factorial experiments are essential to reveal causal relationships especially between combined stressors and their effects in the environment. However, experimental tools that account for the complexity of running waters across different ecosystem compartments, levels of biological organisation, natural or anthropogenic environmental gradients, and replicability are rare. Here we present a new research infrastructure consisting of streamside mobile mesocosms (MOBICOS) that allows analysing the effects of stressors and stressor combinations through multifactorial experiments in near‐natural settings and across anthropogenic pressure gradients. Consisting of eight container‐based running water laboratories operated as bypasses to running surface waters, MOBICOS combines in situ real‐time monitoring of physicochemical and biological parameters with manipulative experiments across ranges of environmental conditions. Different flume types can be set up within MOBICOS to separate and combine different ecosystem compartments (pelagic, epibenthic and hyporheic zones) in a flexible and modular way. Due to its compact design, the MOBICOS units can be shifted easily to particular sites of interest. Furthermore, simultaneous operation of multiple MOBICOS units at different sites allows the integration of natural gradients in multifactorial experiments. We highlight the versatility of the MOBICOS experimental infrastructure with two case studies addressing (a) hydraulic control of lotic biofilms and (b) pollution‐induced community tolerance of biofilms along an environmental gradient. The modular and mobile MOBICOS units have the potential to significantly advance our understanding of causal relationships between natural environmental oscillations, anthropogenic stressors and their combined ecological impacts on lotic aquatic ecosystems beyond existing stream mesocosm approaches.
    Type of Medium: Online Resource
    ISSN: 1434-2944 , 1522-2632
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2006634-X
    detail.hit.zdb_id: 1420232-3
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: International Review of Hydrobiology, Wiley, Vol. 107, No. 1-2 ( 2022-03), p. 34-45
    Abstract: Large wood (LW) is an integral part of natural river ecosystems and determines their ecological integrity by modulating hydromorphology and providing habitats. Hence, LW installations are a common restoration measure in large rivers, even if effects on biodiversity are ambiguous or unknown for ecosystem functioning. Here we quantified the hydromorphological, biological, and functional effects of LW 8 months after installation in a large gravel‐bed river. Both morphological and flow diversity increased strongly by 821% and 127%, respectively. Similarly, fish abundance increased nearly 10‐fold, and macroinvertebrate diversity increased by 35%. Ecosystem functions benefited from LW installation and increased significantly (e.g., by up to 390% for bacterial production) at sites influenced by LW compared to those without LW. Our results highlight the role of the bark habitat of LW that increased the direct effects of LW via the provision of new habitat and stimulated ecosystem‐wide processes. Our integrative approach evaluating the success of LW installations in a large river revealed cascading effects from the provisioning of new habitats, the increase of species diversity to higher ecosystem functioning. It also demonstrated that hydromorphological parameters or community composition alone are insufficient to quantify the complex effects of LW installation, which underlines the necessity to evaluate restoration success with different measures.
    Type of Medium: Online Resource
    ISSN: 1434-2944 , 1522-2632
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2006634-X
    detail.hit.zdb_id: 1420232-3
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Wiley ; 2021
    In:  River Research and Applications Vol. 37, No. 2 ( 2021-02), p. 119-122
    In: River Research and Applications, Wiley, Vol. 37, No. 2 ( 2021-02), p. 119-122
    Type of Medium: Online Resource
    ISSN: 1535-1459 , 1535-1467
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2074114-5
    SSG: 12
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Wiley ; 2022
    In:  River Research and Applications Vol. 38, No. 2 ( 2022-02), p. 323-333
    In: River Research and Applications, Wiley, Vol. 38, No. 2 ( 2022-02), p. 323-333
    Abstract: Many large rivers used for navigation have lost their hydromorphological heterogeneity, which has led to the widespread loss of native biodiversity and the concurrent establishment of non‐native communities. While the effects on biodiversity are well‐described, we know little about how the loss of natural habitats and the restructuring of communities cumulate into effects on riverine food webs. We constructed binary and ingestion webs for benthic macroinvertebrates and their resources in the Elbe River (Germany) and compared if food chain length, food web complexity, robustness, ingestion rates, and consumer‐resource interaction strength differ among three shoreline engineering practices. Food webs at profoundly altered shorelines were significantly less complex and had significantly shorter food chains than the food web at the semi‐natural shoreline. However, food web robustness to a simulated loss of species was comparable at all shorelines. Total ingestion rates were up to eight times lower at highly altered shorelines due to significantly lower ingestion rates by native species. Predator–prey interaction strength was comparable among shorelines due to higher shares of non‐native predators, indicating that non‐native predators can be functionally equivalent to native predators. We attributed the observed food web differences to the absence of complex habitats at profoundly altered shorelines and the accompanied absence of specialized consumers. Our study provides empirical evidence that hydromorphological modifications reduce the efficiency of food webs to control organic matter dynamics and may ultimately affect the provisioning of riverine ecosystem services.
    Type of Medium: Online Resource
    ISSN: 1535-1459 , 1535-1467
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2074114-5
    SSG: 12
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Aquatic Conservation: Marine and Freshwater Ecosystems, Wiley, Vol. 31, No. 9 ( 2021-09), p. 2496-2505
    Abstract: The freshwater pearl mussel (FPM) is among the most endangered freshwater species worldwide. The few remaining populations suffer from low recruitment rates and are subject to habitat fragmentation, pollution, siltation, decline or loss of host fish populations, and climate change. Successful conservation strategies for FPM require a holistic understanding of its ecological requirements, life history, population dynamics, and habitat prerequisites. Although habitat requirements are well described, food requirements at different life stages have received less attention. Stable isotope analyses of FPM and potential food resources in three German streams were combined with mixing model analysis to quantify organic matter resources assimilated by juvenile (first year after encystment from host fish) and semi‐adult (10 years old, immature) individuals. There were only slight differences in dietary contributions between the two life stages, and terrestrial particulate organic matter and benthic organic matter contributed substantially to the diet. Tissue type was more important in explaining variation in dietary contributions than individual variation for semi‐adult FPM. The strong reliance on terrestrial resources sheds new light on the functional role of unionid mussels and the connection of streams to their riparian area. The dependence of FPM on terrestrial resources also emphasizes the need for a stronger focus on the restoration and protection of intact riparian areas, including wetlands with their specific vegetation, when planning conservation and management strategies for threatened FPM populations.
    Type of Medium: Online Resource
    ISSN: 1052-7613 , 1099-0755
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 1146285-1
    detail.hit.zdb_id: 1496050-3
    SSG: 12
    SSG: 14
    SSG: 21
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Wiley ; 2007
    In:  Freshwater Biology Vol. 52, No. 6 ( 2007-06), p. 1022-1032
    In: Freshwater Biology, Wiley, Vol. 52, No. 6 ( 2007-06), p. 1022-1032
    Type of Medium: Online Resource
    ISSN: 0046-5070 , 1365-2427
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2007
    detail.hit.zdb_id: 2020306-8
    detail.hit.zdb_id: 121180-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Global Change Biology, Wiley, Vol. 28, No. 16 ( 2022-08), p. 4783-4793
    Abstract: Human impacts, particularly nutrient pollution and land‐use change, have caused significant declines in the quality and quantity of freshwater resources. Most global assessments have concentrated on species diversity and composition, but effects on the multifunctionality of streams and rivers remain unclear. Here, we analyse the most comprehensive compilation of stream ecosystem functions to date to provide an overview of the responses of nutrient uptake, leaf litter decomposition, ecosystem productivity, and food web complexity to six globally pervasive human stressors. We show that human stressors inhibited ecosystem functioning for most stressor‐function pairs. Nitrate uptake efficiency was most affected and was inhibited by 347% due to agriculture. However, concomitant negative and positive effects were common even within a given stressor‐function pair. Some part of this variability in effect direction could be explained by the structural heterogeneity of the landscape and latitudinal position of the streams. Ranking human stressors by their absolute effects on ecosystem multifunctionality revealed significant effects for all studied stressors, with wastewater effluents (194%), agriculture (148%), and urban land use (137%) having the strongest effects. Our results demonstrate that we are at risk of losing the functional backbone of streams and rivers if human stressors persist in contemporary intensity, and that freshwaters are losing critical ecosystem services that humans rely on. We advocate for more studies on the effects of multiple stressors on ecosystem multifunctionality to improve the functional understanding of human impacts. Finally, freshwater management must shift its focus toward an ecological function‐based approach and needs to develop strategies for maintaining or restoring ecosystem functioning of streams and rivers.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Freshwater Biology, Wiley, Vol. 62, No. 10 ( 2017-10), p. 1693-1706
    Abstract: The sum of benthic autotrophic and bacterial production often exceeds the sum of pelagic autotrophic and bacterial production, and hence may contribute substantially to whole‐lake carbon fluxes, especially in shallow lakes. Furthermore, both benthic and pelagic autotrophic and bacterial production are highly edible and of sufficient nutritional quality for animal consumers. We thus hypothesised that pelagic and benthic transfer efficiencies (ratios of production at adjacent trophic levels) in shallow lakes should be similar. We performed whole ecosystem studies in two shallow lakes (3.5 ha, mean depth 2 m), one with and one without submerged macrophytes, and quantified pelagic and benthic biomass, production and transfer efficiencies for bacteria, phytoplankton, epipelon, epiphyton, macrophytes, zooplankton, macrozoobenthos and fish. We expected higher transfer efficiencies in the lake with macrophytes, because these provide shelter and food for macrozoobenthos and may thus enable a more efficient conversion of basal production to consumer production. In both lakes, the majority of the whole‐lake autotrophic and bacterial production was provided by benthic organisms, but whole‐lake primary consumer production mostly relied on pelagic autotrophic and bacterial production. Consequently, transfer efficiency of benthic autotrophic and bacterial production to macrozoobenthos production was an order of magnitude lower than the transfer efficiency of pelagic autotrophic and bacterial production to rotifer and crustacean production. Between‐lake differences in transfer efficiencies were minor. We discuss several aspects potentially causing the unexpectedly low benthic transfer efficiencies, such as the food quality of producers, pelagic–benthic links, oxygen concentrations in the deeper lake areas and additional unaccounted consumer production by pelagic and benthic protozoa and meiobenthos at intermediate or top trophic levels. None of these processes convincingly explain the large differences between benthic and pelagic transfer efficiencies. Our data indicate that shallow eutrophic lakes, even with a major share of autotrophic and bacterial production in the benthic zone, can function as pelagic systems with respect to primary consumer production. We suggest that the benthic autotrophic production was mostly transferred to benthic bacterial production, which remained in the sediments, potentially cycling internally in a similar way to what has previously been described for the microbial loop in pelagic habitats. Understanding the energetics of whole‐lake food webs, including the fate of the substantial benthic bacterial production, which is either mineralised at the sediment surface or permanently buried, has important implications for regional and global carbon cycling.
    Type of Medium: Online Resource
    ISSN: 0046-5070 , 1365-2427
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2020306-8
    detail.hit.zdb_id: 121180-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: International Review of Hydrobiology, Wiley, Vol. 107, No. 1-2 ( 2022-03), p. 9-21
    Abstract: Over the last 40 years, a growing number of restoration projects have been implemented to improve the ecological conditions of highly degraded rivers and their floodplains. Despite considerable investment in these projects, information is still limited about the effectiveness and the success of such river restoration measures, mainly due to a lack of standardised and interdisciplinary assessment approaches. During the project ‘Wilde Mulde—Restoration of a dynamic riverine landscape in Central Germany’, we implemented hydromorphological restoration measures (installation of large wood, removal of rip‐rap, reconnection of a former river side‐arm) along a lowland river in Central Germany. We carried out intensive scientific monitoring of biodiversity, hydromorphology, ecosystem functions and services, as well as socio‐economic aspects. A Before/After‐Control/Impact (BACI) design was used to identify the spatial and temporal effects of the restoration measures and to distinguish them from changes caused by background variation. For this, we used a comprehensive set of indicators, including abiotic (flow velocity, diversity of riverbed topography, and flow resistance), biological (ecosystem respiration, macroinvertebrates, fish, carabids, vegetation, and birds) and socio‐economic (acceptance and public awareness) indicators as well as the ecosystem service indicator aesthetic quality of the landscape. To meet the inherent challenges of such a large‐scale field experiment, like unpredictable environmental conditions, we used an experimental approach that allowed us to demonstrate a measurable success of the implemented restoration measures. The majority of the abiotic and some of the biological and socio‐economic indicators at the restored sites approached values of a natural reference site while already deviating from values of a nonnatural reference site two years after restoration. In addition to the applied interdisciplinary approach, multiple scales of field investigations and data analyses are essential as key components for evaluating successful river and floodplain restoration projects.
    Type of Medium: Online Resource
    ISSN: 1434-2944 , 1522-2632
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2006634-X
    detail.hit.zdb_id: 1420232-3
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Freshwater Biology, Wiley, Vol. 63, No. 10 ( 2018-10), p. 1240-1249
    Abstract: Trophic interactions are important pathways of energy and matter fluxes in food webs and are commonly quantified using stable isotopes of carbon (δ 13 C) and nitrogen (δ 15 N). An important prerequisite for this approach is knowledge on the isotopic difference between consumer and resource (trophic discrimination, Δ 13 C and Δ 15 N). The range and mechanism causing variation of trophic discrimination factors remain unclear. We conducted a controlled feeding experiment with 13 freshwater benthic invertebrate taxa fed with six resources to test if the C:N, C:P and N:P ratios of consumer, resources and consumer‐resource imbalances are significant predictors of Δ 13 C and Δ 15 N. We compiled the available literature on discrimination factors for aquatic invertebrates from controlled feeding experiments and field studies to compare the variation in trophic discrimination. Molar C:N and C:P ratios of resources as well as consumer‐resource imbalances of C:N were significantly related to Δ 13 C and explained more than 40% of variation of Δ 13 C, respectively. Resource %N was unrelated to Δ 15 N, but consumer N:P explained 20% of variation of Δ 15 N. Our data taken together with the literature compilation provide a mean Δ 13 C of 0.1‰ ( SD  = 2.2, N  = 157) and a mean Δ 15 N of 2.6‰ ( SD  = 2.0, N  = 155) for aquatic invertebrates to be used in mixing model analysis for estimating dietary proportions. Our study bridges the currently separated disciplines of stable isotope discrimination and ecological stoichiometry and shows that resource C:N:P and consumer‐resource imbalances are powerful predictors of invertebrate trophic discrimination. Including these stoichiometric predictors into stable isotope mixing models may improve the estimates of the contribution of organic matter sources to the diet of invertebrate consumers. The overall discrimination factors for aquatic invertebrates derived from this study may help to produce precise estimates in trophic ecology if taxon‐specific discrimination factors are unavailable.
    Type of Medium: Online Resource
    ISSN: 0046-5070 , 1365-2427
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2020306-8
    detail.hit.zdb_id: 121180-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages