Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Proceedings of the 23rd ACM SIGKDD International Conference on knowledge discovery and data mining, 13 August 2017, pp.2161-2170
    Description: Hydraulic fracturing (or "fracking") is a revolutionary well stimulation technique for shale gas extraction, but has spawned controversy in environmental contamination. If methane from gas wells leaks extensively, this greenhouse gas can impact drinking water wells and enhance global warming. Our work is motivated by this heated debate on environmental issue and focuses on general data analytical techniques to detect anomalous spatial data samples (e.g., water samples related to potential leakages). Specifically, we propose a spatial outlier detection method based on contextual neighbors. Different from existing work, our approach utilizes both spatial attributes and non-spatial contextual attributes to define neighbors. We further use robust metric learning to combine different contextual attributes in order to find meaningful neighbors. Our technique can be applied to any spatial dataset. Extensive experimental results on five real-world datasets demonstrate the effectiveness of our approach. We also show some interesting case studies, including one case linking to leakage of a gas well.
    Keywords: Metric Learning ; Outlier Detection
    ISBN: 9781450348874
    ISBN: 1450348874
    Source: ACM Digital Library (Association for Computing Machinery)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages