Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    American Society for Microbiology ; 2011
    In:  Applied and Environmental Microbiology Vol. 77, No. 19 ( 2011-10), p. 6763-6771
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 77, No. 19 ( 2011-10), p. 6763-6771
    Kurzfassung: 2-Oxoglutarate is located at the junction between central carbon and nitrogen metabolism, serving as an intermediate for both. In nitrogen metabolism, 2-oxoglutarate acts as both a carbon skeletal carrier and an effector molecule. There have been only sporadic reports of its internal concentrations. Here we describe a sensitive and accurate method for determination of the 2-oxoglutarate pool concentration in Escherichia coli . The detection was based on fluorescence derivatization followed by reversed-phase high-pressure liquid chromatography separation. Two alternative cell sampling strategies, both of which were based on a fast filtration protocol, were sequentially developed to overcome both its fast metabolism and contamination from 2-oxoglutarate that leaks into the medium. We observed rapid changes in the 2-oxoglutarate pool concentration upon sudden depletion of nutrients: decreasing upon carbon depletion and increasing upon nitrogen depletion. The latter was studied in mutants lacking either of the two enzymes using 2-oxoglutarate as the carbon substrate for glutamate biosynthesis. The results suggest that flux restriction on either reaction greatly influences the internal 2-oxoglutarate level. Additional study indicates that KgtP, a 2-oxoglutarate proton symporter, functions to recover the leakage loss of 2-oxoglutarate. This recovery mechanism benefits the measurement of cellular 2-oxoglutarate level in practice by limiting contamination from 2-oxoglutarate leakage.
    Materialart: Online-Ressource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2011
    ZDB Id: 223011-2
    ZDB Id: 1478346-0
    SSG: 12
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    American Association for the Advancement of Science (AAAS) ; 2013
    In:  Science Vol. 342, No. 6162 ( 2013-11-29)
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 342, No. 6162 ( 2013-11-29)
    Kurzfassung: To predict the emergence of antibiotic resistance, quantitative relations must be established between the fitness of drug-resistant organisms and the molecular mechanisms conferring resistance. These relations are often unknown and may depend on the state of bacterial growth. To bridge this gap, we have investigated Escherichia coli strains expressing resistance to translation-inhibiting antibiotics. We show that resistance expression and drug inhibition are linked in a positive feedback loop arising from an innate, global effect of drug-inhibited growth on gene expression. A quantitative model of bacterial growth based on this innate feedback accurately predicts the rich phenomena observed: a plateau-shaped fitness landscape, with an abrupt drop in the growth rates of cultures at a threshold drug concentration, and the coexistence of growing and nongrowing populations, that is, growth bistability, below the threshold.
    Materialart: Online-Ressource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Association for the Advancement of Science (AAAS)
    Publikationsdatum: 2013
    ZDB Id: 128410-1
    ZDB Id: 2066996-3
    ZDB Id: 2060783-0
    SSG: 11
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    American Association for the Advancement of Science (AAAS) ; 2010
    In:  Science Vol. 330, No. 6007 ( 2010-11-19), p. 1099-1102
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 330, No. 6007 ( 2010-11-19), p. 1099-1102
    Kurzfassung: In bacteria, the rate of cell proliferation and the level of gene expression are intimately intertwined. Elucidating these relations is important both for understanding the physiological functions of endogenous genetic circuits and for designing robust synthetic systems. We describe a phenomenological study that reveals intrinsic constraints governing the allocation of resources toward protein synthesis and other aspects of cell growth. A theory incorporating these constraints can accurately predict how cell proliferation and gene expression affect one another, quantitatively accounting for the effect of translation-inhibiting antibiotics on gene expression and the effect of gratuitous protein expression on cell growth. The use of such empirical relations, analogous to phenomenological laws, may facilitate our understanding and manipulation of complex biological systems before underlying regulatory circuits are elucidated.
    Materialart: Online-Ressource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Association for the Advancement of Science (AAAS)
    Publikationsdatum: 2010
    ZDB Id: 128410-1
    ZDB Id: 2066996-3
    ZDB Id: 2060783-0
    SSG: 11
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    American Association for the Advancement of Science (AAAS) ; 2022
    In:  Science Vol. 378, No. 6624 ( 2022-12-09)
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 378, No. 6624 ( 2022-12-09)
    Kurzfassung: The intracellular concentration of a protein depends on the rates of several processes, including transcription, translation, and the degradation and/or dilution of messenger RNAs (mRNAs) and proteins. These rates can be vastly different for different genes and across different growth conditions because of gene-specific regulation. At the systems level, protein concentrations are further affected by the availability of shared gene expression machineries—e.g., RNA polymerases and ribosomes—and are constrained by the approximately invariant cellular mass density. Even in one of the best-characterized model organisms, Escherichia coli , it is unclear how the gene-specific and systems-level effects work together toward setting the cellular proteome. This knowledge gap has not only hindered our efforts in building a predictive framework of gene expression but has also limited our abilities in guiding the rational design of gene circuits. RATIONALE We undertook a quantitative, genome-scale study, combining experimental and theoretical approaches, to tease apart the contribution of the specific and global effects on cellular protein concentrations in exponentially growing E. coli cells across a variety of growth conditions. We complemented genome-scale proteomic and transcriptomic data with biochemical measurements of total absolute mRNA abundances and synthesis rates. We compared these measurements to gene dosage and the concentrations of ribosomes and RNA polymerases to quantitatively characterize the activity of the gene expression machinery across conditions. This comprehensive dataset allowed us to analyze, in quantitative detail, the interplay between the activity of gene expression machinery, the activity of individual promoters, and the resulting protein concentrations. RESULTS We compiled a comprehensive atlas of the determinants of gene expression across conditions—from the concentrations of genes, mRNAs, and proteins to the rates of transcriptional and translational initiation and mRNA degradation for thousands of genes. We were able to determine the on rate of each promoter, a quantity capturing the overall effect of transcriptional regulation that has been elusive through most existing gene expression studies. Unexpectedly, we found that for most genes, the cytosolic protein concentrations were primarily determined by the innate magnitude of their promoter on rates, which spanned more than three orders of magnitude. Changes in protein concentrations resulting from changes in growth conditions were typically much smaller—well within one order of magnitude—and were mostly exerted through changes in transcription initiation. E. coli ’s strategy to implement gene regulation can be summarized by two design principles. First, protein concentrations are predominantly set transcriptionally, with relatively invariant posttranscriptional characteristics (translation efficiencies and degradation rates) for most mRNAs and growth conditions. Second, the overall fluxes of transcription and translation are tightly coordinated: The average density of five ribosomes per kilobase is nearly invariant across mRNA species and across growth conditions, even though the mRNA and ribosome abundances can each vary substantially. We find this coordination to be implemented through the anti-sigma factor Rsd, which modulates the availability of RNA polymerases for transcription across different growth conditions. These two principles lead to a quantitative formulation of the central dogma of bacterial gene expression, connecting mRNA and protein concentrations to the regulatory activities of the corresponding promoters. CONCLUSION These quantitative relationships reveal the unexpectedly simple strategies used by E. coli to attain desired protein concentrations despite the complexity of global physiological constraints: Individual protein concentrations are primarily set by gene-specific transcriptional regulation, with global transcriptional regulation set to cancel the strong growth rate dependence of protein synthesis. These relations provide the basis for understanding the behavior of more complex genetic circuits in different conditions and for the inverse problem of deducing regulatory activities given the observed mRNA and protein levels. Principles governing gene expression in E. coli . The availability of RNA polymerases (RNAPs) is coordinated with that of ribosomes, and the mRNA characteristics (translation efficiency and degradation rates) are uniform across most genes and growth conditions. These two principles prescribe a simple gene expression strategy in which protein concentrations are almost entirely controlled at the promoter level for most genes.
    Materialart: Online-Ressource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Association for the Advancement of Science (AAAS)
    Publikationsdatum: 2022
    ZDB Id: 128410-1
    ZDB Id: 2066996-3
    ZDB Id: 2060783-0
    SSG: 11
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Nature, Springer Science and Business Media LLC, Vol. 584, No. 7821 ( 2020-08-20), p. 470-474
    Materialart: Online-Ressource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2020
    ZDB Id: 120714-3
    ZDB Id: 1413423-8
    SSG: 11
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    Springer Science and Business Media LLC ; 2019
    In:  Nature Vol. 575, No. 7784 ( 2019-11-28), p. 664-668
    In: Nature, Springer Science and Business Media LLC, Vol. 575, No. 7784 ( 2019-11-28), p. 664-668
    Materialart: Online-Ressource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2019
    ZDB Id: 120714-3
    ZDB Id: 1413423-8
    SSG: 11
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    Proceedings of the National Academy of Sciences ; 2013
    In:  Proceedings of the National Academy of Sciences Vol. 110, No. 51 ( 2013-12-17), p. 20533-20538
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 110, No. 51 ( 2013-12-17), p. 20533-20538
    Kurzfassung: A long-standing problem in molecular biology is the determination of a complete functional conformational landscape of proteins. This includes not only proteins’ native structures, but also all their respective functional states, including functionally important intermediates. Here, we reveal a signature of functionally important states in several protein families, using direct coupling analysis, which detects residue pair coevolution of protein sequence composition. This signature is exploited in a protein structure-based model to uncover conformational diversity, including hidden functional configurations. We uncovered, with high resolution (mean ∼1.9 Å rmsd for nonapo structures), different functional structural states for medium to large proteins (200–450 aa) belonging to several distinct families. The combination of direct coupling analysis and the structure-based model also predicts several intermediates or hidden states that are of functional importance. This enhanced sampling is broadly applicable and has direct implications in protein structure determination and the design of ligands or drugs to trap intermediate states.
    Materialart: Online-Ressource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: Proceedings of the National Academy of Sciences
    Publikationsdatum: 2013
    ZDB Id: 209104-5
    ZDB Id: 1461794-8
    SSG: 11
    SSG: 12
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    Proceedings of the National Academy of Sciences ; 2014
    In:  Proceedings of the National Academy of Sciences Vol. 111, No. 7 ( 2014-02-18), p. 2596-2601
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 7 ( 2014-02-18), p. 2596-2601
    Kurzfassung: Reaction–diffusion models have been used as a paradigm for describing the de novo emergence of biological patterns such as stripes and spots. In many organisms, these initial patterns are typically refined and elaborated over the subsequent course of development. Here we study the formation of secondary hair follicle patterns in the skin of developing mouse embryos. We used the expression of sex-determining region Y box 2 to identify and distinguish the primary and secondary hair follicles and to infer the spatiotemporal dynamics of the follicle formation process. Quantitative analysis of the specific follicle patterns observed reveals a simple geometrical rule governing the formation of secondary follicles, and motivates an expansion–induction (EI) model in which new follicle formation is driven by the physical growth of the embryo. The EI model requires only one diffusible morphogen and provides quantitative, accurate predictions on the relative positions and timing of secondary follicle formation, using only the observed configuration of primary follicles as input. The same model accurately describes the positions of additional follicles that emerge from skin explants treated with an activator. Thus, the EI model provides a simple and robust mechanism for predicting secondary space-filling patterns in growing embryos.
    Materialart: Online-Ressource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: Proceedings of the National Academy of Sciences
    Publikationsdatum: 2014
    ZDB Id: 209104-5
    ZDB Id: 1461794-8
    SSG: 11
    SSG: 12
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Online-Ressource
    Online-Ressource
    Proceedings of the National Academy of Sciences ; 2016
    In:  Proceedings of the National Academy of Sciences Vol. 113, No. 41 ( 2016-10-11), p. 11414-11419
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 113, No. 41 ( 2016-10-11), p. 11414-11419
    Kurzfassung: The ecology of microbes in the gut has been shown to play important roles in the health of the host. To better understand microbial growth and population dynamics in the proximal colon, the primary region of bacterial growth in the gut, we built and applied a fluidic channel that we call the “minigut.” This is a channel with an array of membrane valves along its length, which allows mimicking active contractions of the colonic wall. Repeated contraction is shown to be crucial in maintaining a steady-state bacterial population in the device despite strong flow along the channel that would otherwise cause bacterial washout. Depending on the flow rate and the frequency of contractions, the bacterial density profile exhibits varying spatial dependencies. For a synthetic cross-feeding community, the species abundance ratio is also strongly affected by mixing and flow along the length of the device. Complex mixing dynamics due to contractions is described well by an effective diffusion term. Bacterial dynamics is captured by a simple reaction–diffusion model without adjustable parameters. Our results suggest that flow and mixing play a major role in shaping the microbiota of the colon.
    Materialart: Online-Ressource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: Proceedings of the National Academy of Sciences
    Publikationsdatum: 2016
    ZDB Id: 209104-5
    ZDB Id: 1461794-8
    SSG: 11
    SSG: 12
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Online-Ressource
    Online-Ressource
    Proceedings of the National Academy of Sciences ; 2003
    In:  Proceedings of the National Academy of Sciences Vol. 100, No. 8 ( 2003-04-15), p. 4411-4416
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 100, No. 8 ( 2003-04-15), p. 4411-4416
    Kurzfassung: We study the thermodynamic and dynamic behaviors of twist-induced denaturation bubbles in a long, stretched random sequence of DNA. The small bubbles associated with weak twist are delocalized. Above a threshold torque, the bubbles of several tens of bases or larger become preferentially localized to AT-rich segments. In the localized regime, the bubbles exhibit “aging” and move around subdiffusively with continuously varying dynamic exponents. These properties are derived by using results of large-deviation theory together with scaling arguments and are verified by Monte Carlo simulations.
    Materialart: Online-Ressource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: Proceedings of the National Academy of Sciences
    Publikationsdatum: 2003
    ZDB Id: 209104-5
    ZDB Id: 1461794-8
    SSG: 11
    SSG: 12
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz