Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2011
    In:  Proceedings of the National Academy of Sciences Vol. 108, No. 25 ( 2011-06-21), p. 10260-10265
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 108, No. 25 ( 2011-06-21), p. 10260-10265
    Abstract: Loss of cystic fibrosis transmembrane conductance regulator (CFTR) anion channel function causes cystic fibrosis (CF) lung disease. CFTR is expressed in airway epithelia, but how CF alters electrolyte transport across airway epithelia has remained uncertain. Recent studies of a porcine model showed that in vivo, excised, and cultured CFTR −/− and CFTR ΔF508/ΔF508 airway epithelia lacked anion conductance, and they did not hyperabsorb Na + . Therefore, we asked whether Cl − and Na + conductances were altered in human CF airway epithelia. We studied differentiated primary cultures of tracheal/bronchial epithelia and found that transepithelial conductance (Gt) under basal conditions and the cAMP-stimulated increase in Gt were markedly attenuated in CF epithelia compared with non-CF epithelia. These data reflect loss of the CFTR anion conductance. In CF and non-CF epithelia, the Na + channel inhibitor amiloride produced similar reductions in Gt and Na + absorption, indicating that Na + conductance in CF epithelia did not exceed that in non-CF epithelia. Consistent with previous reports, adding amiloride caused greater reductions in transepithelial voltage and short-circuit current in CF epithelia than in non-CF epithelia; these changes are attributed to loss of a Cl − conductance. These results indicate that Na + conductance was not increased in these cultured CF tracheal/bronchial epithelia and point to loss of anion transport as key to airway epithelial dysfunction in CF.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2011
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1997
    In:  Proceedings of the National Academy of Sciences Vol. 94, No. 8 ( 1997-04-15), p. 4056-4061
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 94, No. 8 ( 1997-04-15), p. 4056-4061
    Abstract: Little is known about the virulence mechanisms employed by Haemophilus ducreyi in the production of genital ulcers. This Gram-negative bacterium previously has been shown to produce a soluble cytotoxic activity that kills HeLa and HEp-2 cells. We have now identified a cluster of three H. ducreyi genes that encode this cytotoxic activity. The predicted proteins encoded by these genes are most similar to the products of the Escherichia coli cdtABC genes that comprise the cytolethal distending toxin (CDT) of this enteric pathogen. Eleven of 12 H. ducreyi strains were shown to possess this gene cluster and culture supernatants from these strains readily killed HeLa cells. The culture supernatant from a single strain of H. ducreyi that lacked these genes was unable to kill HeLa cells. When the H. ducreyi cdtABC gene cluster was cloned into E. coli , culture supernatant from the recombinant E. coli clone killed HeLa cells. A monoclonal antibody that neutralized this soluble cytotoxic activity of H. ducreyi was shown to bind to the H. ducreyi cdtC gene product. This soluble H. ducreyi cytotoxin may play a role in the development or persistence of the ulcerative lesions characteristic of chancroid.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1997
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages