Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Animals
Type of Medium
Language
Year
  • 1
    Language: English
    In: Recent Patents on Anti-Infective Drug Discovery, 2010, Vol.5(3), p.181-194
    Description: Despite the improvements in HCV-therapy achieved in the last 20 years, the occurrence of high frequency of non-responders and of therapy-related side effects has lead to an ongoing interest in optimizing duration and dosage of current antiviral regimens as well as to the research and development of new antiviral treatment. Recently, the discovery of a system for in vitro HCV replication provided a useful tool for a better understanding of the viral life cycle followed by the discovery of new compounds that unlike classical drugs specifically target fundamental steps of this process. The aim of this review is to provide an update on the preclinical and clinical development of novel anti-HCV treatments targeting the first steps of the viral life cycle. The recent patents in this review article discuss the new perspectives in HCV therapy.
    Keywords: Hcv ; Entry Inhibitors ; Preclinical Development ; Clinical Development ; Hcv-Therapy ; Antiviral Treatment ; Replication ; Anti-Hcv Treatments ; Flavivirus ; Chronic ; Acute ; Cirrhosis ; Hepatocellular ; Glomerulonephritis ; Cryoglobulinemia ; Porphyria Cutanea Tarda ; Lymphoproliferative ; Liver Transplantation ; Hcc ; Prognosis ; Fibrosis ; Ifn-Alpha ; Ribavirin ; Peginterferon ; Peg-Ifn ; Viral Rna ; Anaemia ; Thrombocytopenia ; Hepacivirus ; Flaviviridae ; Heterodimer ; Glycosaminoglycans ; Glycoprotein ; Drug Design ; Albumin ; Boceprevir ; Telaprevir ; Albinterferon Alpha-2b ; Luciferase Assay ; Liver-Upa-Scid ; Viral Envelope ; Epitopes ; Monoclonal Antibodies ; Plasma Donor Antibodies ; Polyclonal Antibodies ; Hcv-Genotypes ; Glycosylation ; Glycans ; Cyanovirin-N ; High-Mannose Oligosaccharides ; Iminosugars ; Bvdv ; Adenovirus ; Vaccinia Virus ; Canary Pox Virus ; Alphavirus ; Cd81 ; Tetraspanin ; Endocytosis ; Claudin-1 ; Occludin ; Cldn1 ; Chlorpromazine ; Chloroquine ; Concanamycin A ; Bafilomycin ; Heparin ; Heparinase ; Lamiridosins ; Phosphorothioate ; Oligonucleotides (Ps-Ons) ; Arbidol ; C5a ; Amphipathic-Helical Peptide ; Paramyxoviruses ; Sp-30 ; Pro 206 ; Civacir ; Itx5061 ; Rep 9ac ; Jtk-652 ; Immune Serum Globulin ; Placebo ; Monotherapy ; Clinical Trials ; Lamiaceae
    ISSN: 1574-891X
    E-ISSN: 2212-4071
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Medicine & Science in Sports & Exercise, 2013, Vol.45(1), pp.29-35
    Description: PURPOSE: Anabolic androgenic steroids (AAS) are synthetic androgen-like compounds that are abused in sport communities despite their adverse effects. Nerve growth factor (NGF) influences neuronal differentiation and survival, and it also mediates higher brain functions such as learning and memory. Changes in NGF expression have been implicated in neurodegenerative disorders, including Alzheimer disease. Hence, we decided to study the effect of chronic AAS exposure on brain NGF profile, NGF-dependent cholinergic function, and related behavioral performance. METHODS: Male Wistar rats were injected for 4 wk with either nandrolone or stanozolol at daily doses (5.0 mg·kg, s.c.) that are considered equivalent to those abused by humans. NGF levels and NGF receptor (TrkA and p75NTR) expression were measured in the hippocampus and in the basal forebrain. Choline acetyltransferase expression was evaluated in basal forebrain. Spatial learning and memory were assessed using the Morris water maze. RESULTS: AAS treatment caused region-specific changes in the expression of NGF and its receptors. Both nandrolone and stanozolol increased NGF levels in the hippocampus and reduced NGF levels in the basal forebrain, reduced p75NTR expression in the hippocampus, and failed to affect TrkA expression in the basal forebrain. Finally, AAS treatment reduced the expression of choline acetyltransferase in the basal forebrain and impaired the behavioral performance in the Morris water maze. CONCLUSION: The evidence that supraphysiological doses of AAS cause neurotrophic unbalance and related behavioral disturbances raises the concern that AAS abuse in humans may affect mechanisms that lie at the core of neuronal plasticity.
    Keywords: Anabolic Agents -- Adverse Effects ; Androgens -- Adverse Effects ; Hippocampus -- Drug Effects ; Nandrolone -- Adverse Effects ; Nerve Growth Factor -- Metabolism ; Performance-Enhancing Substances -- Adverse Effects ; Stanozolol -- Adverse Effects;
    ISSN: 0195-9131
    E-ISSN: 15300315
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Neuropsychopharmacology, 2011, Vol.37(4), p.929
    Description: Prenatal exposure to restraint stress causes long-lasting changes in neuroplasticity that likely reflect pathological modifications triggered by early-life stress. We found that the offspring of dams exposed to repeated episodes of restraint stress during pregnancy (here named 'prenatal restraint stress mice' or 'PRS mice') developed a schizophrenia-like phenotype, characterized by a decreased expression of brain-derived neurotrophic factor and glutamic acid decarboxylase 67, an increased expression of type-1 DNA methyl transferase (DNMT1) in the frontal cortex, and a deficit in social interaction, locomotor activity, and prepulse inhibition. PRS mice also showed a marked decrease in metabotropic glutamate 2 (mGlu2) and mGlu3 receptor mRNA and protein levels in the frontal cortex, which was manifested at birth and persisted in adult life. This decrease was associated with an increased binding of DNMT1 to CpG-rich regions of mGlu2 and mGlu3 receptor promoters and an increased binding of MeCP2 to the mGlu2 receptor promoter. Systemic treatment with the selective mGlu2/3 receptor agonist LY379268 (0.5 mg/kg, i.p., twice daily for 5 days), corrected all the biochemical and behavioral abnormalities shown in PRS mice. Our data show for the first time that PRS induces a schizophrenia-like phenotype in mice, and suggest that epigenetic changes in mGlu2 and mGlu3 receptors lie at the core of the pathological programming induced by early-life stress.
    Keywords: Medicine ; Pharmacy, Therapeutics, & Pharmacology ; Anatomy & Physiology;
    ISSN: 0893-133X
    E-ISSN: 1740634X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Diabetologia, 2014, Vol.57(5), pp.980-990
    Description: Byline: Ivana Nikolic (1), Tamara Saksida (1), Katia Mangano (2), Milica Vujicic (1), Ivana Stojanovic (1), Ferdinando Nicoletti (2), Stanislava Stosic-Grujicic (1) Keywords: Beta cell apoptosis; Carbon monoxide-releasing molecule-A1; Cytokines; Type 1 diabetes Abstract: Aims/hypothesis Recent studies have identified carbon monoxide (CO) as a potential therapeutic molecule for the treatment of autoimmune diseases owing to its anti-inflammatory and anti-apoptotic properties. We explored the efficacy and the mechanisms of action of the CO-releasing molecule (CORM)-A1 in preclinical models of type 1 diabetes. Methods The impact of CORM-A1 on diabetes development was evaluated in models of spontaneous diabetes in NOD mice and in diabetes induced in C57BL/6 mice by multiple low-dose streptozotocin (MLDS). Ex vivo analysis was performed to determine the impact of CORM-A1 both on T helper (Th) cell and macrophage differentiation and on their production of soluble mediators in peripheral tissues and in infiltrates of pancreatic islets. The potential effect of CORM-A1 on cytokine-induced apoptosis in pancreatic islets or beta cells was evaluated in vitro. Results CORM-A1 conferred protection from diabetes in MLDS-induced mice and reduced diabetes incidence in NOD mice as confirmed by preserved insulin secretion and improved histological signs of the disease. In MLDS-challenged mice, CORM-A1 attenuated Th1, Th17, and M1 macrophage response and facilitated Th2 cell differentiation. In addition, CORM-A1 treatment in NOD mice upregulated the regulatory arm of the immune response (M2 macrophages and FoxP3.sup.+ regulatory T cells). Importantly, CORM-A1 interfered with in vitro cytokine-induced beta cell apoptosis through the reduction of cytochrome c and caspase 3 levels. Conclusions/interpretation The ability of CORM-A1 to protect mice from developing type 1 diabetes provides a valuable proof of concept for the potential exploitation of controlled CO delivery in clinical settings for the treatment of autoimmune diabetes. Author Affiliation: (1) Department of Immunology, Institute for Biological Research 'Sinisa Stankovic', University of Belgrade, Bul. Despota Stefana 142, 11060, Belgrade, Serbia (2) Department of Biomedical Sciences, School of Medicine, University of Catania, Via Androne 83, 95124, Catania, Italy Article History: Registration Date: 10/01/2014 Received Date: 19/07/2013 Accepted Date: 18/12/2013 Online Date: 02/02/2014 Article note: Electronic supplementary material The online version of this article (doi: 10.1007/s00125-014-3170-7) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
    Keywords: Beta cell apoptosis ; Carbon monoxide-releasing molecule-A1 ; Cytokines ; Type 1 diabetes
    ISSN: 0012-186X
    E-ISSN: 1432-0428
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 19 March 2013, Vol.110(12), pp.4804-9
    Description: Epigenetic mechanisms are involved in the pathophysiology of depressive disorders and are unique potential targets for therapeutic intervention. The acetylating agent L-acetylcarnitine (LAC), a well-tolerated drug, behaves as an antidepressant by the epigenetic regulation of type 2 metabotropic glutamate (mGlu2) receptors. It caused a rapid and long-lasting antidepressant effect in Flinders Sensitive Line rats and in mice exposed to chronic unpredictable stress, which, respectively, model genetic and environmentally induced depression. In both models, LAC increased levels of acetylated H3K27 bound to the Grm2 promoter and also increased acetylation of NF-ĸB-p65 subunit, thereby enhancing the transcription of Grm2 gene encoding for the mGlu2 receptor in hippocampus and prefrontal cortex. Importantly, LAC reduced the immobility time in the forced swim test and increased sucrose preference as early as 3 d of treatment, whereas 14 d of treatment were needed for the antidepressant effect of chlorimipramine. Moreover, there was no tolerance to the action of LAC, and the antidepressant effect was still seen 2 wk after drug withdrawal. Conversely, NF-ĸB inhibition prevented the increase in mGlu2 expression induced by LAC, whereas the use of a histone deacetylase inhibitor supported the epigenetic control of mGlu2 expression. Finally, LAC had no effect on mGlu2 knockout mice exposed to chronic unpredictable stress, and a single injection of the mGlu2/3 receptor antagonist LY341495 partially blocked LAC action. The rapid and long-lasting antidepressant action of LAC strongly suggests a unique approach to examine the epigenetic hypothesis of depressive disorders in humans, paving the way for more efficient antidepressants with faster onset of action.
    Keywords: Acetylcarnitine -- Pharmacology ; Antidepressive Agents -- Pharmacology ; Epigenesis, Genetic -- Drug Effects ; Hippocampus -- Metabolism ; Nerve Tissue Proteins -- Biosynthesis ; Prefrontal Cortex -- Metabolism ; Receptors, Metabotropic Glutamate -- Biosynthesis
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Psychopharmacology, 2011, Vol.217(3), pp.301-313
    Description: Byline: Sara Morley-Fletcher (1), Jerome Mairesse (1), Amelie Soumier (2), Mounira Banasr (2), Francesca Fagioli (3), Cecilia Gabriel (4), Elisabeth Mocaer (4), Annie Daszuta (2), Bruce McEwen (5), Ferdinando Nicoletti (1,6,7), Stefania Maccari (1) Keywords: Agomelatine; Prenatal stress; Adult neurogenesis; Ventral hippocampus; Fluoxetine; Phospho-CREB; Metabotropic glutamate receptors Abstract: Rationale and objectives The rat model of prenatal restraint stress (PRS) replicates factors that are implicated in the etiology of anxious/depressive disorders. We used this model to test the therapeutic efficacy of agomelatine, a novel antidepressant that behaves as a mixed MT1/MT2 melatonin receptor agonist/5-HT.sub.2c serotonin receptor antagonist. Results Adult PRS rats showed behavioral, cellular, and biochemical abnormalities that were consistent with an anxious/depressive phenotype. These included an increased immobility in the forced swim test, an anxiety-like behavior in the elevated plus maze, reduced hippocampal levels of phosphorylated cAMP-responsive element binding protein (p-CREB), reduced hippocampal levels of mGlu2/3 and mGlu5 metabotropic glutamate receptors, and reduced neurogenesis in the ventral hippocampus, the specific portion of the hippocampus that encodes memories related to stress and emotions. All of these changes were reversed by a 3- or 6-week treatment with agomelatine (40--50 mg/kg, i.p., once a day). Remarkably, agomelatine had no effect in age-matched control rats, thereby behaving as a "disease-dependent" drug. Conclusions These data indicate that agomelatine did not act on individual symptoms but corrected all aspects of the pathological epigenetic programming triggered by PRS. Our findings strongly support the antidepressant activity of agomelatine and suggest that the drug impacts mechanisms that lie at the core of anxious/depressive disorders. Author Affiliation: (1) Neuroplasticity Team, UMR 8576 CNRS Structural and Functional Glycobiology Unit, University Lille North of France (USTL), 59655, Villeneuve d'Ascq, France (2) IC2N, IBDLM, UMR6216, CNRS, Marseille, France (3) Azienda Sanitaria Locale, RM.E. Unita Operativa Complessa Adolescent, Rome, Italy (4) Institut de Recherches Internationales Servier, Courbevoie, France (5) Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, USA (6) Department of Human Physiology and Pharmacology, Sapienza University, Rome, Italy (7) I.N.M. Neuromed, Pozzilli, Italy Article History: Registration Date: 24/03/2011 Received Date: 10/01/2011 Accepted Date: 23/03/2011 Online Date: 19/04/2011 Article note: S. Morley-Fletcher and J. Mairesse contributed equally to this work.
    Keywords: Agomelatine ; Prenatal stress ; Adult neurogenesis ; Ventral hippocampus ; Fluoxetine ; Phospho-CREB ; Metabotropic glutamate receptors
    ISSN: 0033-3158
    E-ISSN: 1432-2072
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Epilepsia, July 2015, Vol.56(7), pp.1141-1151
    Description: To purchase or authenticate to the full-text of this article, please visit this link: http://onlinelibrary.wiley.com/doi/10.1111/epi.13024/abstract Byline: Valerio D'Amore, Constanze Randow, Ferdinando Nicoletti, Richard Teke Ngomba, Gilles Luijtelaar Keywords: Glutamate; GABA ; Absence epilepsy; WAG/Rij rats; mGlu PAM Summary Objective Glutamate and [gamma]-aminobutyric acid (GABA) are the key neurotransmitter systems in the cortical-thalamocortical network, involved in normal and pathologic oscillations such as spike-wave discharges (SWDs), which characterize different forms of absence epilepsy. Metabotropic glutamate (mGlu) and GABA receptors are widely expressed within this network. Herein, we examined the effects of two selective positive allosteric modulators (PAMs) of mGlu1 and mGlu5 receptors, the GABA reuptake inhibitor, tiagabine, and their interaction in the somatosensory cortex and thalamus on SWDs in WAG/Rij rats. Methods Male WAG/Rij rats were equipped with bilateral cannulas in the somatosensory cortex (S1po) or the ventrobasal (VB) thalamic nuclei, and with cortical electroencephalography (EEG) electrodes. Rats received a single dose of the mGlu1 receptor PAM, RO0711401, or the mGlu5 receptor PAM, VU0360172, various doses of tiagabine, or VU0360172 combined with tiagabine. Results Both PAMs suppressed SWDs regardless of the site of injection. Tiagabine enhanced SWDs when injected into the thalamus, but, unexpectedly, suppressed SWDs in a dose-dependent manner when injected into the cortex. Intracortical co-injection of VU0360172 and tiagabine produced slightly larger effects as compared to either VU0360172 or tiagabine alone. Intrathalamic co-injections of VU0360172 and subthreshold doses of tiagabine caused an antiabsence effect similar to that exhibited by VU0360172 alone in the first 10 min. At 30 min, however, the antiabsence effect of VU0360172 was prevented by subthreshold doses of tiagabine, and the combination produced a paradoxical proabsence effect at 40 and 50 min. Significance These data (1) show that mGlu1 and mGlu5 receptor PAMs reduce absence seizures acting at both thalamic and cortical levels; (2) demonstrate for the first time that tiagabine, despite its established absence-enhancing effect, reduces SWDs when injected into the somatosensory cortex; and (3) indicate that the efficacy of VU0360172 in the thalamus may be critically affected by the availability of (extra)synaptic GABA. CAPTION(S): Data S1. Surgery and EEG Recordings.
    Keywords: Glutamate ; Gaba ; Absence Epilepsy ; Wag /Rij Rats ; Mg Lu Pam
    ISSN: 0013-9580
    E-ISSN: 1528-1167
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 05 January 2014, Vol.369(1633), pp.20130162
    Description: Approximately half of all patients with multiple sclerosis (MS) experience cognitive dysfunction, including learning and memory impairment. Recent studies suggest that hippocampal pathology is involved, although the mechanisms underlying these deficits remain poorly understood. Evidence obtained from a mouse model of MS, the experimental autoimmune encephalomyelitis (EAE), suggests that in the hippocampus of EAE mice long-term potentiation (LTP) is favoured over long-term depression in response to repetitive synaptic activation, through a mechanism dependent on enhanced IL-1β released from infiltrating lymphocytes or activated microglia. Facilitated LTP during an immune-mediated attack might underlie functional recovery, but also cognitive deficits and excitotoxic neurodegeneration. Having identified that pro-inflammatory cytokines such as IL-1β can influence synaptic function and integrity in early MS, it is hoped that new treatments targeted towards preventing synaptic pathology can be developed.
    Keywords: Experimental Autoimmune Encephalomyelitis ; Hippocampus ; Interleukin-1β ; Long-Term Potentiation ; Multiple Sclerosis ; Synaptic Plasticity ; Models, Neurological ; Cytokines -- Metabolism ; Encephalomyelitis, Autoimmune, Experimental -- Physiopathology ; Hippocampus -- Pathology ; Long-Term Potentiation -- Physiology ; Multiple Sclerosis -- Physiopathology ; Synapses -- Physiology
    ISSN: 09628436
    E-ISSN: 1471-2970
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: European Journal of Pharmacology, 05 September 2018, Vol.834, pp.92-102
    Description: Gasotransmitters are a group of gaseous molecules, with pleiotropic biological functions. These molecules include nitric oxide (NO), hydrogen sulfide (H S), and carbon monoxide (CO). Abnormal production and metabolism of these molecules have been observed in several pathological conditions. The understanding of the role of gasotransmitters in the immune system has grown significantly in the past years, and independent studies have shed light on the effect of exogenous and endogenous gasotransmitters on immune responses. Moreover, encouraging results come from the efficacy of NO-, CO- and H S -donors in preclinical animal models of autoimmune, acute and chronic inflammatory diseases. To date, data on the influence of gasotransmitters in immunity and immunopathology are often scattered and partial, and the scarcity of clinical trials using NO-, CO- and H S -donors, reveals that more effort is warranted. This review focuses on the role of gasotransmitters in the immune system and covers the evidences on the possible use of gasotransmitters for the treatment of inflammatory conditions.
    Keywords: Gasotransmitter ; Nitric Oxide ; Hydrogen Sulfide ; Carbon Monoxide ; Immune System ; Eae ; Neuroinflammation ; Multiple Sclerosis ; Pharmacy, Therapeutics, & Pharmacology
    ISSN: 0014-2999
    E-ISSN: 1879-0712
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: European Journal of Pharmacology, 10 January 2010, Vol.626(1), pp.64-71
    Description: Depression is one of the most prevalent and life-threatening forms of mental illnesses, whereas Alzheimer's disease is a neurodegenerative disorder that affects more than 37 million people worldwide. Recent evidence suggests a strong relationship between depression and Alzheimer's disease. A lifetime history of major depression has been considered as a risk factor for later development of Alzheimer's disease. The presence of depressive symptoms can affect the conversion of mild cognitive impairment into Alzheimer's disease. Neuritic plaques and neurofibrillary tangles, the two major hallmarks of Alzheimer's disease brain, are more pronounced in the brains of Alzheimer's disease patients with comorbid depression as compared with Alzheimer's disease patients without depression. On the other hand, neurodegenerative phenomena have been observed in different brain regions of patients with a history of depression. Recent evidence suggests that molecular mechanisms and cascades that underlie the pathogenesis of major depression, such as chronic inflammation and hyperactivation of hypothalamic–pituitary–adrenal (HPA) axis, are also involved in the pathogenesis of Alzheimer's disease. In particular, a specific impairment in the signaling of some neurotrophins such as transforming-growth-factor β1 (TGF-β1) and brain-derived neurotrophic factor (BDNF) has been observed both in depression and Alzheimer's disease. In the present review we will examine the evidence on the common molecular pathways between depression and Alzheimer's disease and we will discuss these pathways as new pharmacological targets for the treatment of both major depression and Alzheimer's disease.
    Keywords: Major Depression ; Alzheimer'S Disease ; Chronic Inflammation ; Β-Amyloid ; Transforming-Growth-Factor-Β1 ; Brain-Derived Neurotrophic Factor ; Neuroprotection ; Pharmacy, Therapeutics, & Pharmacology
    ISSN: 0014-2999
    E-ISSN: 1879-0712
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages