Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Michaelis, Martin  (15)
  • Cinatl Jr., J.  (15)
  • Apoptosis
Type of Medium
Language
Year
  • 1
    Language: English
    In: Neoplasia, January 2009, Vol.11(1), pp.1-9
    Description: Although human cytomegalovirus (HCMV) is generally not regarded to be an oncogenic virus, HCMV infection has been implicated in malignant diseases from different cancer entities. On the basis of our experimental findings, we developed the concept of “oncomodulation” to better explain the role of HCMV in cancer. Oncomodulation means that HCMV infects tumor cells and increases their malignancy. By this concept, HCMV was proposed to be a therapeutic target in a fraction of cancer patients. However, the clinical relevance of HCMV-induced oncomodulation remains to be clarified. One central question that has to be definitively answered is if HCMV establishes persistent virus replication in tumor cells or not. In our eyes, recent clinical findings from different groups in glioblastoma patients and especially the detection of a correlation between the numbers of HCMV-infected glioblastoma cells and tumor stage (malignancy) strongly increase the evidence that HCMV may exert oncomodulatory effects. Here, we summarize the currently available knowledge about the molecular mechanisms that may contribute to oncomodulation by HCMV as well as the clinical findings that suggest that a fraction of tumors from different entities is indeed infected with HCMV.
    Keywords: Medicine
    ISSN: 1476-5586
    ISSN: 20452322
    E-ISSN: 1476-5586
    E-ISSN: 20452322
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: PLoS ONE, 2012, Vol.7(5), p.e36506
    Description: Oncolytic influenza A viruses with deleted NS1 gene (delNS1) replicate selectively in tumour cells with defective interferon response and/or activated Ras/Raf/MEK/ERK signalling pathway. To develop a delNS1 virus with specific immunostimulatory properties, we used an optimised technology to insert the interleukin-15 (IL-15) coding sequence into the viral NS gene segment (delNS1-IL-15). DelNS1 and delNS1-IL-15 exerted similar oncolytic effects. Both viruses replicated and caused caspase-dependent apoptosis in interferon-defective melanoma cells. Virus replication was required for their oncolytic activity. Cisplatin enhanced the oncolytic activity of delNS1 viruses. The cytotoxic drug increased delNS1 replication and delNS1-induced caspase-dependent apoptosis. Interference with MEK/ERK signalling by RNAi-mediated depletion or the MEK inhibitor U0126 did not affect the oncolytic effects of the delNS1 viruses. In oncolysis sensitive melanoma cells, delNS1-IL-15 (but not delNS1) infection resulted in the production of IL-15 levels ranging from 70 to 1140 pg/mL in the cell culture supernatants. The supernatants of delNS1-IL-15-infected (but not of delNS1-infected) melanoma cells induced primary human natural killer cell-mediated lysis of non-infected tumour cells. In conclusion, we constructed a novel oncolytic influenza virus that combines the oncolytic activity of delNS1 viruses with immunostimulatory properties through production of functional IL-15. Moreover, we showed that the oncolytic activity of delNS1 viruses can be enhanced in combination with cytotoxic anti-cancer drugs.
    Keywords: Research Article ; Biology ; Medicine ; Virology ; Infectious Diseases ; Molecular Biology ; Oncology ; Dermatology
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: PLoS ONE, 2011, Vol.6(5), p.e19705
    Description: Glycyrrhizin is known to exert antiviral and anti-inflammatory effects. Here, the effects of an approved parenteral glycyrrhizin preparation (Stronger Neo-Minophafen C) were investigated on highly pathogenic influenza A H5N1 virus replication, H5N1-induced apoptosis, and H5N1-induced pro-inflammatory responses in lung epithelial (A549) cells. Therapeutic glycyrrhizin concentrations substantially inhibited H5N1-induced expression of the pro-inflammatory molecules CXCL10, interleukin 6, CCL2, and CCL5 (effective glycyrrhizin concentrations 25 to 50 µg/ml) but interfered with H5N1 replication and H5N1-induced apoptosis to a lesser extent (effective glycyrrhizin concentrations 100 µg/ml or higher). Glycyrrhizin also diminished monocyte migration towards supernatants of H5N1-infected A549 cells. The mechanism by which glycyrrhizin interferes with H5N1 replication and H5N1-induced pro-inflammatory gene expression includes inhibition of H5N1-induced formation of reactive oxygen species and (in turn) reduced activation of NFκB, JNK, and p38, redox-sensitive signalling events known to be relevant for influenza A virus replication. Therefore, glycyrrhizin may complement the arsenal of potential drugs for the treatment of H5N1 disease.
    Keywords: Research Article ; Medicine ; Infectious Diseases ; Pharmacology
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Medical Microbiology and Immunology, 2011, Vol.200(1), pp.53-60
    Description: Influenza A virus infection of macrophages and virus-induced pro-inflammatory gene expression are regarded to contribute to severity of influenza A virus-caused diseases. Although some data are available on cytokine production by influenza A virus-infected macrophages, systematic comparisons of the virus types are currently considered to be of high relevance in humans (pandemic H1N1/2009, seasonal H1N1, seasonal H3N2, highly pathogenic avian influenza H5N1) on pro-inflammatory potential, and relevant underlying cellular signalling events are missing. Here, we show that the infection of human monocyte-derived macrophages with pandemic H1N1/2009 (A/HH/01/2009), seasonal H1N1/1999 (A/New Caledonia/20/99), seasonal H3N2/2004 (A/California/7/2004) or highly pathogenic H5N1/2004 (A/Thailand/1(Kan-1)/04) results in similar infection rates. However, the investigated H1N1 strains caused delayed and decreased apoptosis in comparison with H3N2/2004 or H5N1/2004. Moreover, human macrophage infection with H3N2/2004 or H5N1/2004 but not with H1N1 viruses was associated with pronounced pro-inflammatory cytokine production and activation of relevant mitogen-activated protein kinase pathways as indicated by phosphorylation of p38, JNK and ERK 1/2. These findings are in line with clinical observations indicating enhanced disease severity in H3N2- or H5N1-infected patients compared to individuals infected with pandemic H1N1/2009 or seasonal H1N1.
    Keywords: Influenza A ; MAPK ; Cytokines ; Seasonal influenza ; H5N1 ; Pandemic H1N1/2009
    ISSN: 0300-8584
    E-ISSN: 1432-1831
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Medical Microbiology and Immunology, 2010, Vol.199(4), pp.291-297
    Description: Hypercytokinaemia is thought to contribute to highly pathogenic H5N1 influenza A virus disease. Glycyrrhizin is known to exert immunomodulatory and anti-inflammatory effects and therefore a candidate drug for the control of H5N1-induced pro-inflammatory gene expression. Here, the effects of an approved parenteral glycyrrhizin preparation were investigated on H5N1 virus replication, H5N1-induced pro-inflammatory responses, and H5N1-induced apoptosis in human monocyte-derived macrophages. Glycyrrhizin 100 μg/ml, a therapeutically achievable concentration, impaired H5N1-induced production of CXCL10, interleukin 6, and CCL5 and inhibited H5N1-induced apoptosis but did not interfere with H5N1 replication. Global inhibition of immune responses may result in the loss of control of virus replication by cytotoxic immune cells including natural killer cells and cytotoxic CD8 + T-lymphocytes. Notably, glycyrrhizin concentrations that inhibited H5N1-induced pro-inflammatory gene expression did not affect cytolytic activity of natural killer cells. Since H5N1-induced hypercytokinaemia is considered to play an important role within H5N1 pathogenesis, glycyrrhizin may complement the arsenal of potential drugs for the treatment of H5N1 disease.
    Keywords: Glycyrrhizin ; H5N1 ; Cytokines ; Monocyte-derived macrophages
    ISSN: 0300-8584
    E-ISSN: 1432-1831
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Biochemical Pharmacology, 01 February 2010, Vol.79(3), pp.413-420
    Description: The antioxidant N-acetyl- -cysteine (NAC) had been shown to inhibit replication of seasonal human influenza A viruses. Here, the effects of NAC on virus replication, virus-induced pro-inflammatory responses and virus-induced apoptosis were investigated in H5N1-infected lung epithelial (A549) cells. NAC at concentrations ranging from 5 to 15 mM reduced H5N1-induced cytopathogenic effects (CPEs), virus-induced apoptosis and infectious viral yields 24 h post-infection. NAC also decreased the production of pro-inflammatory molecules (CXCL8, CXCL10, CCL5 and interleukin-6 (IL-6)) in H5N1-infected A549 cells and reduced monocyte migration towards supernatants of H5N1-infected A549 cells. The antiviral and anti-inflammatory mechanisms of NAC included inhibition of activation of oxidant sensitive pathways including transcription factor NF-κB and mitogen activated protein kinase p38. Pharmacological inhibitors of NF-κB (BAY 11-7085) or p38 (SB203580) exerted similar effects like those determined for NAC in H5N1-infected cells. The combination of BAY 11-7085 and SB203580 resulted in increased inhibitory effects on virus replication and production of pro-inflammatory molecules relative to either single treatment. NAC inhibits H5N1 replication and H5N1-induced production of pro-inflammatory molecules. Therefore, antioxidants like NAC represent a potential additional treatment option that could be considered in the case of an influenza A virus pandemic.
    Keywords: Ros ; NAC ; Cytokines ; H5n1 ; Apoptosis ; Pharmacy, Therapeutics, & Pharmacology ; Chemistry
    ISSN: 0006-2952
    E-ISSN: 1873-2968
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Antimicrobial Chemotherapy, 2007, Vol. 60(5), pp.981-986
    Description: OBJECTIVES: West Nile virus (WNV) infection causes severe meningitis and encephalitis in a subset of patients. WNV-induced apoptosis has been suggested to contribute to WNV pathogenesis. Tetracyclines exert antiviral effects against HIV and inhibit apoptosis in different models of neuronal disease. Here, the effects of the tetracyclines minocycline, demeclocycline and chlortetracycline were observed on WNV replication and WNV-induced apoptosis in different human CNS-derived cell types (primary human brain neurons, primary human retinal pigment epithelial cells and T98G human glioma cell line). METHODS: WNV replication was studied by cytopathic effects and virus yield reduction assay. Cell viability was examined by MTT assay. Apoptosis was investigated by immunostaining for activated caspase 3 and cleaved poly(ADP-ribose) polymerase. Expression and phosphorylation of cellular proteins were examined by western blot. RESULTS: Minocycline exerted the strongest anti-WNV activity. Non-toxic minocycline concentrations that can be achieved in human tissues significantly reduced WNV titres in all cell types tested. Minocycline inhibited WNV-induced apoptosis and suppressed virus-induced activation of c-Jun N-terminal kinase (JNK) and its target c-jun. The JNK inhibitor L-JNKi exerted similar effects to minocycline. CONCLUSIONS: These data suggest that minocycline-induced inhibition of JNK activation contributes to minocycline-induced inhibition of WNV replication and WNV-induced apoptosis. Minocycline is a clinically available, inexpensive and generally very well-tolerated drug. It could be readily evaluated for the treatment of humans with serious WNV infection.
    Keywords: Antiviral Therapy ; Brain ; Central Nervous System ; Antibiotic ; Encephalitis
    ISSN: 0305-7453
    E-ISSN: 1460-2091
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Biochemical Pharmacology, 15 January 2010, Vol.79(2), pp.130-136
    Description: Artemisinin derivatives are well-tolerated anti-malaria drugs that also exert anti-cancer activity. Here, we investigated artemisinin and its derivatives dihydroartemisinin and artesunate in a panel of chemosensitive and chemoresistant human neuroblastoma cells as well as in primary neuroblastoma cultures. Only dihydroartemisinin and artesunate affected neuroblastoma cell viability with artesunate being more active. Artesunate-induced apoptosis and reactive oxygen species in neuroblastoma cells. Of 16 cell lines and two primary cultures, only UKF-NB-3 CDDP showed low sensitivity to artesunate. Characteristic gene expression signatures based on a previous analysis of artesunate resistance in the NCI60 cell line panel clearly separated UKF-NB-3 CDDP from the other cell lines. -Buthionine-S,R-sulfoximine, an inhibitor of GCL (glutamate–cysteine ligase), resensitised in part UKF-NB-3 CDDP cells to artesunate. This finding together with bioinformatic analysis of expression of genes involved in glutathione metabolism showed that this pathway is involved in artesunate resistance. These data indicate that neuroblastoma represents an artesunate-sensitive cancer entity and that artesunate is also effective in chemoresistant neuroblastoma cells.
    Keywords: Neuroblastoma ; Artesunate ; Artemisinin ; Chemoresistance ; Cancer ; Chemotherapy ; Pharmacy, Therapeutics, & Pharmacology ; Chemistry
    ISSN: 0006-2952
    E-ISSN: 1873-2968
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: BMC Microbiology, 01 May 2007, Vol.7(1), p.49
    Description: Abstract Background West Nile virus (WNV) infection can cause severe meningitis and encephalitis in humans. Apoptosis was recently shown to contribute to the pathogenesis of WNV encephalitis. Here, we used WNV-infected glioma cells to study...
    Keywords: Biology
    ISSN: 1471-2180
    E-ISSN: 1471-2180
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Investigative ophthalmology & visual science, November 2009, Vol.50(11), pp.5419-25
    Description: Ocular involvement in influenza A virus diseases is common but usually limited to mild conjunctivitis. Rarely, inflammation of the choriocapillaris may result in atrophia of the retinal pigment epithelium (RPE). Primary human retinal pigment epithelial (RPE) cells were infected with seasonal (H1N1 A/New Caledonia/20/99, H3N2 A/California/7/2004) or highly pathogenic avian H5N1 (A/Thailand/1(Kan-1)/04, A/Vietnam/1203/04, A/Vietnam/1194/04) influenza strains. Influenza A virus replication was studied by investigation of cytopathogenic effects, immune staining for influenza A virus nucleoprotein, determination of virus titers, and electron microscopy. Apoptosis induction was examined by immune staining for activated caspase 3 and cleaved PARP. Proinflammatory gene expression was investigated by quantitative PCR. H5N1 but not seasonal influenza strains replicated to high titers (〉10(8) TCID(50)/mL; 50% tissue culture infectious dose/milliliter) in RPE cells. H5N1 infection resulted in RPE cell apoptosis that was abolished by the antiviral drug ribavirin. Pretreatment with type I interferons (interferon-alpha and -beta) or the type II interferon, (interferon-gamma), inhibited H5N1 replication. Moreover, H5N1 infection induced expression of proinflammatory genes (tumor necrosis factor-alpha, CXCL8, CXCL10, CXCL11, and interleukin-6), which was inhibited by ribavirin in a concentration-dependent manner. A novel cell type derived from the central nervous system was permissive to H5N1 influenza virus replication. This findings supports those suggesting H5N1 influenza strains to own a greater potential to spread to nonrespiratory tissues than seasonal human influenza viruses. Moreover, the data warrant the further study of the role of influenza A virus replication in retinal diseases associated with influenza A virus infections.
    Keywords: Influenza A Virus, H1n1 Subtype -- Physiology ; Influenza A Virus, H2n2 Subtype -- Physiology ; Influenza A Virus, H5n1 Subtype -- Physiology ; Retinal Pigment Epithelium -- Virology ; Virus Replication -- Physiology
    E-ISSN: 1552-5783
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages