Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2018  (5)
  • Bacteria
  • 1
    Language: English
    In: Nature Reviews Microbiology, 2018, Vol.16(10), pp.601-615
    Description: RNA-binding proteins (RBPs) are central to most if not all cellular processes, dictating the fate of virtually all RNA molecules in the cell. Starting with pioneering work on ribosomal proteins, studies of bacterial RBPs have paved the way for molecular studies of RNA-protein interactions. Work over the years has identified major RBPs that act on cellular transcripts at the various stages of bacterial gene expression and that enable their integration into post-transcriptional networks that also comprise small non-coding RNAs. Bacterial RBP research has now entered a new era in which RNA sequencing-based methods permit mapping of RBP activity in a truly global manner in vivo. Moreover, the soaring interest in understudied members of host-associated microbiota and environmental communities is likely to unveil new RBPs and to greatly expand our knowledge of RNA-protein interactions in bacteria.
    Keywords: Medical And Health Sciences ; Basic Medicine ; Microbiology In The Medical Area ; Medicin Och Hälsovetenskap ; Medicinska Och Farmaceutiska Grundvetenskaper ; Mikrobiologi Inom Det Medicinska Området
    ISSN: 1740-1526
    E-ISSN: 17401534
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: EMBO Journal, 03 December 2018, Vol.37(23), pp.n/a-n/a
    Description: While mucosal inflammation is a major source of stress during enteropathogen infection, it remains to be fully elucidated how the host benefits from this environment to clear the pathogen. Here, we show that host stress induced by different stimuli mimicking inflammatory conditions strongly reduces the binding of to epithelial cells. Mechanistically, stress activates acid sphingomyelinase leading to host membrane remodeling. Consequently, knockdown or pharmacological inhibition of the acid sphingomyelinase blunts the stress‐dependent inhibition of binding to host cells. Interestingly, stress caused by intracellular replication also results in remodeling of the host cell membrane, and , which precludes re‐infection by this and other non‐motile pathogens. In contrast, Typhimurium overcomes the shortage of permissive entry sites by gathering effectively at the remaining platforms through its flagellar motility. Overall, our findings reveal host membrane remodeling as a novel stress‐responsive cell‐autonomous defense mechanism that protects epithelial cells from infection by non‐motile bacterial pathogens. Stress‐induced host membrane remodeling constitutes a novel cell‐autonomous defensive mechanism that protects epithelial cells from infection by and other non‐motile bacterial pathogens. Host oxidative stress strongly reduces S. flexneri binding to epithelial cells. Stress leads to host membrane remodeling, via activation of the acid sphingomyelinase by the MAPK p38 pathway, resulting in the formation of ceramide domains. Intracellular Shigella replication induces remodeling of the host cell membrane, in vitro and in vivo. Stress‐induced host membrane remodeling precludes re‐infection by non‐motile pathogens; motile pathogens are able to overcome this barrier through flagellar motility. Host membrane remodeling is a cell‐autonomous defense mechanism that protects epithelial cells from infection by .
    Keywords: Acid Sphingomyelinase ; Host Stress Response ; Membrane Remodeling ; Salmonella ; Shigella
    ISSN: 0261-4189
    E-ISSN: 1460-2075
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Molecular Cell, 07 June 2018, Vol.70(5), pp.785-799
    Description: Bacteria are an exceedingly diverse group of organisms whose molecular exploration is experiencing a renaissance. While the classical view of bacterial gene expression was relatively simple, the emerging view is more complex, encompassing extensive post-transcriptional control involving riboswitches, RNA thermometers, and regulatory small RNAs (sRNAs) associated with the RNA-binding proteins CsrA, Hfq, and ProQ, as well as CRISPR/Cas systems that are programmed by RNAs. Moreover, increasing interest in members of the human microbiota and environmental microbial communities has highlighted the importance of understudied bacterial species with largely unknown transcriptome structures and RNA-based control mechanisms. Collectively, this creates a need for global RNA biology approaches that can rapidly and comprehensively analyze the RNA composition of a bacterium of interest. We review such approaches with a focus on RNA-seq as a versatile tool to investigate the different layers of gene expression in which RNA is made, processed, regulated, modified, translated, and turned over. RNA-seq-based approaches are revolutionizing how bacterial RNA biology can be studied. Hör, Gorski, and Vogel review the available global methods that can be used to chart the increasingly diverse number of RNA species and functions in any microbe of interest.
    Keywords: RNA-Seq ; Non-Coding RNA ; Small RNA ; Transcription ; RNA-Binding Protein ; Post-Transcriptional Control ; Biology
    ISSN: 1097-2765
    E-ISSN: 1097-4164
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: PLoS Genetics, 01 June 2018, Vol.14(6), p.e1007401
    Description: Invasion of epithelial cells by Salmonella enterica requires expression of genes located in the pathogenicity island I (SPI-1). The expression of SPI-1 genes is very tightly regulated and activated only under specific conditions. Most studies have focused on the regulatory pathways that induce SPI-1 expression. Here, we describe a new regulatory circuit involving CRP-cAMP, a widely established metabolic regulator, in silencing of SPI-1 genes under non-permissive conditions. In CRP-cAMP-deficient strains we detected a strong upregulation of SPI-1 genes in the mid-logarithmic growth phase. Genetic analyses revealed that CRP-cAMP modulates the level of HilD, the master regulator of Salmonella invasion. This regulation occurs at the post-transcriptional level and requires the presence of a newly identified regulatory motif within the hilD 3'UTR. We further demonstrate that in Salmonella the Hfq-dependent sRNA Spot 42 is under the transcriptional repression of CRP-cAMP and, when this transcriptional repression is relieved, Spot 42 exerts a positive effect on hilD expression. In vivo and in vitro assays indicate that Spot 42 targets, through its unstructured region III, the 3'UTR of the hilD transcript. Together, our results highlight the biological relevance of the hilD 3'UTR as a hub for post-transcriptional control of Salmonella invasion gene expression.
    Keywords: Biology
    ISSN: 1553-7390
    E-ISSN: 1553-7404
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Geoderma, 01 September 2018, Vol.325, pp.37-48
    Description: Organic particles including microorganisms are a significant fraction of the mobile organic matter (MOM) pool that contributes to initial pedogenesis. Still, the dynamics and the interplay of the multitude of processes that control the mobilization, transport, and retention of MOM are vastly unclear. We studied this interplay using an ‘artificial soil’ as model for a young, unstructured soil with defined initial composition employing a novel two-layer column experiment. The upstream layer was composed of a mixture of well-defined mineral phases, a sterile organic matter source and a diverse, natural microbial inoculant mimicking an organic-rich topsoil. The downstream layer, mimicking the subsoil, was composed of the mineral phases, only. Columns were run under water-unsaturated flow conditions with multiple flow interruptions to reflect natural flow regimes and to detect possible non-equilibrium processes. Pore system changes caused by flow were inspected by scanning electron microscopy and computed micro-tomography. MOM-related physicochemical effluent parameters and bacterial community diversity and abundance were assessed by molecular analysis of the effluent and the solid phase obtained after the long-term irrigation experiment (75 d). Tomographic data showed homogeneous packing of the fine-grained media (sandy loam). During flow, the initially single-grain structured artificial soil showed no connected macropores. In total, 6% of the initial top layer organic matter was mobile. The release and transport of particulate (1.2%) and dissolved organic matter (4.8%) including bacteria were controlled by non-equilibrium conditions. Bacterial cells were released and selectively transported to downstream layer resulting in a depth-dependent and selective establishment of bacterial communities in the previously sterile artificial soil. This study underlines the importance of bacterial transport from the surface or topsoil for colonization and maturation of downstream compartments. This initial colonization of pristine surfaces is the major step in forming biogeochemical interfaces - the prominent locations of intensive biological activity and element turnover that seem to play a major role for the functioning of soil.
    Keywords: Mobile Organic Matter ; Unsaturated Two-Layer Column Experiment ; Experimental Pedogenesis ; Artificial Soil ; Computed Micro-Tomography ; Molecular Analysis ; Agriculture
    ISSN: 0016-7061
    E-ISSN: 1872-6259
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages