Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Bacterial Proteins  (8)
  • Hfq
Type of Medium
Language
Year
  • 1
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 11 October 2016, Vol.113(41), pp.11591-11596
    Description: The functional annotation of transcriptomes and identification of noncoding RNA (ncRNA) classes has been greatly facilitated by the advent of next-generation RNA sequencing which, by reading the nucleotide order of transcripts, theoretically allows the rapid profiling of all transcripts in a cell. However, primary sequence per se is a poor predictor of function, as ncRNAs dramatically vary in length and structure and often lack identifiable motifs. Therefore, to visualize an informative RNA landscape of organisms with potentially new RNA biology that are emerging from microbiome and environmental studies requires the use of more functionally relevant criteria. One such criterion is the association of RNAs with functionally important cognate RNA-binding proteins. Here we analyze the full ensemble of cellular RNAs using gradient profiling by sequencing (Grad-seq) in the bacterial pathogen Salmonella enterica, partitioning its coding and noncoding transcripts based on their network of RNA-protein interactions. In addition to capturing established RNA classes based on their biochemical profiles, the Grad-seq approach enabled the discovery of an overlooked large collective of structured small RNAs that form stable complexes with the conserved protein ProQ. We show that ProQ is an abundant RNA-binding protein with a wide range of ligands and a global influence on Salmonella gene expression. Given its generic ability to chart a functional RNA landscape irrespective of transcript length and sequence diversity, Grad-seq promises to define functional RNA classes and major RNA-binding proteins in both model species and genetically intractable organisms.
    Keywords: Hfq ; Proq ; RNA–Protein Interaction ; Noncoding RNA ; Small RNA ; Bacterial Proteins -- Metabolism ; High-Throughput Nucleotide Sequencing -- Methods ; RNA, Bacterial -- Metabolism ; RNA-Binding Proteins -- Metabolism ; Salmonella Enterica -- Metabolism
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: EMBO Journal, 03 June 2015, Vol.34(11), pp.1478-1492
    Description: There is an expanding list of examples by which one can posttranscriptionally influence the expression of others. This can involve sponges that sequester regulatory s of s in the same regulon, but the underlying molecular mechanism of such cross talk remains little understood. Here, we report sponge‐mediated cross talk in the posttranscriptional network of GcvB, a conserved Hfq‐dependent small with one of the largest regulons known in bacteria. We show that decay from the locus encoding an amino acid transporter generates a stable fragment (SroC) that base‐pairs with GcvB. This interaction triggers the degradation of GcvB by ase E, alleviating the GcvB‐mediated repression of other amino acid‐related transport and metabolic genes. Intriguingly, since the itself is a target of GcvB, the SroC sponge seems to enable both an internal feed‐forward loop to activate its parental in and activation of many ‐encoded s in the same pathway. Disabling this cross talk affects bacterial growth when peptides are the sole carbon and nitrogen sources. Decay of the bacterial GcvB , which keeps it from regulating its targets, is triggered by a 3′‐‐derived fragment from a target . This ability of s to compete for regulatory interaction presents a new mode of cross talk in bacteria. . Decay of the bacterial GcvB s, which keeps it from regulating its m targets, is triggered by a 3′‐‐derived fragment from a target m. This ability of ms to compete for regulatory interaction presents a new mode of cross talk in bacteria.
    Keywords: G Cv B ; H Fq ; Noncoding Rna ; Rn Ase E ; S Ro C
    ISSN: 0261-4189
    E-ISSN: 1460-2075
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: EMBO Journal, 17 October 2012, Vol.31(20), pp.4005-4019
    Description: The small RNAs associated with the protein Hfq constitute one of the largest classes of post‐transcriptional regulators known to date. Most previously investigated members of this class are encoded by conserved free‐standing genes. Here, deep sequencing of Hfq‐bound transcripts from multiple stages of growth of revealed a plethora of new small RNA species from within mRNA loci, including DapZ, which overlaps with the 3′ region of the biosynthetic gene, . Synthesis of the DapZ small RNA is independent of DapB protein synthesis, and is controlled by HilD, the master regulator of invasion genes. DapZ carries a short G/U‐rich domain similar to that of the globally acting GcvB small RNA, and uses GcvB‐like seed pairing to repress translation of the major ABC transporters, DppA and OppA. This exemplifies double functional output from an mRNA locus by the production of both a protein and an Hfq‐dependent ‐acting RNA. Our atlas of Hfq targets suggests that the 3′ regions of mRNA genes constitute a rich reservoir that provides the Hfq network with new regulatory small RNAs. Deep sequencing of Hfq‐binding RNAs isolated from at different growth stages reveals that the 3′ UTR of bacterial mRNAs are a rich source of regulatory small RNAs which modulate gene expression in trans.
    Keywords: Abc Transporter ; Dapz ; Gcvb ; Hfq ; 3′ Utr
    ISSN: 0261-4189
    E-ISSN: 1460-2075
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Molecular Cell, 04 February 2016, Vol.61(3), pp.352-363
    Description: Small RNAs (sRNAs) from conserved noncoding genes are crucial regulators in bacterial signaling pathways but have remained elusive in the Cpx response to inner membrane stress. Here we report that an alternative biogenesis pathway releasing the conserved mRNA 3′ UTR of stress chaperone CpxP as an ∼60-nt sRNA provides the noncoding arm of the Cpx response. This so-called CpxQ sRNA, generated by general mRNA decay through RNase E, acts as an Hfq-dependent repressor of multiple mRNAs encoding extracytoplasmic proteins. Both CpxQ and the Cpx pathway are required for cell survival under conditions of dissipation of membrane potential. Our discovery of CpxQ illustrates how the conversion of a transcribed 3′ UTR into an sRNA doubles the output of a single mRNA to produce two factors with spatially segregated functions during inner membrane stress: a chaperone that targets problematic proteins in the periplasm and a regulatory RNA that dampens their synthesis in the cytosol. Chao and Vogel discover that a small RNA cleaved off the 3′ end of an mRNA provides the elusive regulatory noncoding arm of the bacterial Cpx response to inner membrane stress.
    Keywords: Cpx Pathway ; Cpxp ; Cpxq ; 3′ Utr ; Hfq ; Rnase E ; Noncoding RNA ; Nhab ; Envelope Stress ; Membrane Potential ; Biology
    ISSN: 1097-2765
    E-ISSN: 1097-4164
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: RNA Biology, 01 April 2012, Vol.9(4), pp.520-531
    Description: Helicobacter pylori, one of the most prevalent human pathogens, used to be thought to lack small regulatory RNAs (sRNAs) which are otherwise considered abundant in all bacteria. However, our recent analysis of the primary transcriptome of H. pylori discovered an unexpectedly large number of...
    Keywords: RNA-Seq ; Small RNA ; Hfq ; Helicobacter Pylori ; RNA Binding Proteins ; Affinity Chromatography ; Post-Transcriptional Control ; Co-Immunoprecipitation ; Anatomy & Physiology
    ISSN: 1547-6286
    E-ISSN: 1555-8584
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Molecular Cell, 05 January 2017, Vol.65(1), pp.39-51
    Description: Understanding RNA processing and turnover requires knowledge of cleavages by major endoribonucleases within a living cell. We have employed TIER-seq (transiently inactivating an endoribonuclease followed by RNA-seq) to profile cleavage products of the essential endoribonuclease RNase E in . A dominating cleavage signature is the location of a uridine two nucleotides downstream in a single-stranded segment, which we rationalize structurally as a key recognition determinant that may favor RNase E catalysis. Our results suggest a prominent biogenesis pathway for bacterial regulatory small RNAs whereby RNase E acts together with the RNA chaperone Hfq to liberate stable 3′ fragments from various precursor RNAs. Recapitulating this process in vitro, Hfq guides RNase E cleavage of a representative small-RNA precursor for interaction with a mRNA target. In vivo, the processing is required for target regulation. Our findings reveal a general maturation mechanism for a major class of post-transcriptional regulators. Chao et al. discover that the essential bacterial RNase E cleaves numerous transcripts at preferred sites by sensing uridine as a 2-nt ruler. RNase E processing of various precursor RNAs produces many small regulatory RNAs, constituting a major small-RNA biogenesis pathway in bacteria.
    Keywords: Rnase E ; RNA Degradome ; Non-Coding RNA ; Hfq ; 3′ Utr ; Arcz ; Rpra ; Srna Maturation ; Uridine Ruler ; Tier-Seq ; Biology
    ISSN: 1097-2765
    E-ISSN: 1097-4164
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Genes & development, 01 November 2008, Vol.22(21), pp.2914-25
    Description: Noncoding RNA regulators have been implicated in almost all imaginable cellular processes. Here we review how regulatory small RNAs such as Spot42, SgrS, GlmY, and GlmZ and a cis-encoded ribozyme in glmS mRNA control sugar metabolism. Besides discussing the physiological implications, we show how the study of these molecules contributed to our understanding of the mechanisms and of general principles of RNA-based regulation. These include the post-transcriptional repression or activation of gene expression within polycistronic mRNAs; novel ribonucleoprotein complexes composed of small RNA, Hfq, and/or RNase E; and the hierarchical action of regulatory RNAs.
    Keywords: Carbohydrate Metabolism ; Bacterial Proteins -- Metabolism ; RNA, Bacterial -- Metabolism ; RNA, Untranslated -- Metabolism
    ISSN: 0890-9369
    E-ISSN: 15495477
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: mBio, 2019, Vol.10(1)
    Description: The protein ProQ has recently been discovered as the centerpiece of a previously overlooked “third domain” of small RNA-mediated control of gene expression in bacteria. As in vitro work continues to reveal molecular mechanisms, it is also important to understand how ProQ affects the life cycle of bacterial pathogens as these pathogens infect eukaryotic cells. Here, we have determined how ProQ shapes Salmonella virulence and how the activities of this RNA-binding protein compare with those of Hfq, another central protein in RNA-based gene regulation in this and other bacteria. To this end, we apply global transcriptomics of pathogen and host cells during infection. In doing so, we reveal ProQ-dependent transcript changes in key virulence and host immune pathways. Moreover, we differentiate the roles of ProQ from those of Hfq during infection, for both coding and noncoding transcripts, and provide an important resource for those interested in ProQ-dependent small RNAs in enteric bacteria. ABSTRACT FinO domain proteins such as ProQ of the model pathogen Salmonella enterica have emerged as a new class of major RNA-binding proteins in bacteria. ProQ has been shown to target hundreds of transcripts, including mRNAs from many virulence regions, but its role, if any, in bacterial pathogenesis has not been studied. Here, using a Dual RNA-seq approach to profile ProQ-dependent gene expression changes as Salmonella infects human cells, we reveal dysregulation of bacterial motility, chemotaxis, and virulence genes which is accompanied by altered MAPK (mitogen-activated protein kinase) signaling in the host. Comparison with the other major RNA chaperone in Salmonella , Hfq, reinforces the notion that these two global RNA-binding proteins work in parallel to ensure full virulence. Of newly discovered infection-associated ProQ-bound small noncoding RNAs (sRNAs), we show that the 3′UTR-derived sRNA STnc540 is capable of repressing an infection-induced magnesium transporter mRNA in a ProQ-dependent manner. Together, this comprehensive study uncovers the relevance of ProQ for Salmonella pathogenesis and highlights the importance of RNA-binding proteins in regulating bacterial virulence programs.
    Keywords: Research Article ; Molecular Biology And Physiology ; Editor'S Pick ; Hfq ; Noncoding Rna ; Proq ; Rna-Seq ; Bacterial Pathogen ; Posttranscriptional Control
    ISSN: 21612129
    E-ISSN: 2150-7511
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages