Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Genes & development, 01 November 2008, Vol.22(21), pp.2914-25
    Description: Noncoding RNA regulators have been implicated in almost all imaginable cellular processes. Here we review how regulatory small RNAs such as Spot42, SgrS, GlmY, and GlmZ and a cis-encoded ribozyme in glmS mRNA control sugar metabolism. Besides discussing the physiological implications, we show how the study of these molecules contributed to our understanding of the mechanisms and of general principles of RNA-based regulation. These include the post-transcriptional repression or activation of gene expression within polycistronic mRNAs; novel ribonucleoprotein complexes composed of small RNA, Hfq, and/or RNase E; and the hierarchical action of regulatory RNAs.
    Keywords: Carbohydrate Metabolism ; Bacterial Proteins -- Metabolism ; RNA, Bacterial -- Metabolism ; RNA, Untranslated -- Metabolism
    ISSN: 0890-9369
    E-ISSN: 15495477
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: EMBO Journal, 17 October 2012, Vol.31(20), pp.4005-4019
    Description: The small RNAs associated with the protein Hfq constitute one of the largest classes of post‐transcriptional regulators known to date. Most previously investigated members of this class are encoded by conserved free‐standing genes. Here, deep sequencing of Hfq‐bound transcripts from multiple stages of growth of revealed a plethora of new small RNA species from within mRNA loci, including DapZ, which overlaps with the 3′ region of the biosynthetic gene, . Synthesis of the DapZ small RNA is independent of DapB protein synthesis, and is controlled by HilD, the master regulator of invasion genes. DapZ carries a short G/U‐rich domain similar to that of the globally acting GcvB small RNA, and uses GcvB‐like seed pairing to repress translation of the major ABC transporters, DppA and OppA. This exemplifies double functional output from an mRNA locus by the production of both a protein and an Hfq‐dependent ‐acting RNA. Our atlas of Hfq targets suggests that the 3′ regions of mRNA genes constitute a rich reservoir that provides the Hfq network with new regulatory small RNAs. Deep sequencing of Hfq‐binding RNAs isolated from at different growth stages reveals that the 3′ UTR of bacterial mRNAs are a rich source of regulatory small RNAs which modulate gene expression in trans.
    Keywords: Abc Transporter ; Dapz ; Gcvb ; Hfq ; 3′ Utr
    ISSN: 0261-4189
    E-ISSN: 1460-2075
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: EMBO Journal, 13 November 2013, Vol.32(22), pp.2963-2979
    Description: Small RNAs use a diversity of well‐characterized mechanisms to repress mRNAs, but how they activate gene expression at the mRNA level remains not well understood. The predominant activation mechanism of Hfq‐associated small RNAs has been translational control whereby base pairing with the target prevents the formation of an intrinsic inhibitory structure in the mRNA and promotes translation initiation. Here, we report a translation‐independent mechanism whereby the small RNA RydC selectively activates the longer of two isoforms of mRNA (encoding cyclopropane fatty acid synthase) in . Target activation is achieved through seed pairing of the pseudoknot‐exposed, conserved 5′ end of RydC to an upstream region of the mRNA. The seed pairing stabilizes the messenger, likely by interfering directly with RNase E‐mediated decay in the 5′ untranslated region. Intriguingly, this mechanism is generic such that the activation is equally achieved by seed pairing of unrelated small RNAs, suggesting that this mechanism may be utilized in the design of RNA‐controlled synthetic circuits. Physiologically, RydC is the first small RNA known to regulate membrane stability. The small RNA RydC stabilizes target mRNAs in a translation‐independent manner through base pairing to the 5′UTR, blocking RNase E access. Cyclopropane fatty acid synthase is a target for RydC, providing the first link between sRNA regulation and membrane biosynthesis in bacteria.
    Keywords: Fatty Acid Synthesis ; Hfq ; Mrna Activation ; Noncoding Rna ; Small Rna
    ISSN: 0261-4189
    E-ISSN: 1460-2075
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Genes & development, 15 May 2013, Vol.27(10), pp.1073-8
    Description: The abundant RNA-binding proteins CsrA and Hfq each impact bacterial physiology by working in conjunction with small RNAs to control large post-transcriptional regulons. The small RNAs involved were considered mechanistically distinct, regulating mRNAs either directly through Hfq-mediated base-pairing or indirectly by sequestering the global translational repressor CsrA. In this issue of Genes & Development, Jørgensen and colleagues (pp. 1132-1145) blur these distinctions with a dual-mechanism small RNA that acts through both Hfq and CsrA to regulate the formation of bacterial biofilms.
    Keywords: Csra ; Csrb ; Hfq ; Pga ; C-Di-Gmp ; Gene Expression Regulation, Bacterial ; Biofilms -- Growth & Development ; Escherichia Coli -- Genetics ; RNA, Bacterial -- Genetics
    ISSN: 08909369
    E-ISSN: 1549-5477
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages