Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biology
Type of Medium
Language
Year
  • 1
    Language: English
    In: Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 05 January 2014, Vol.369(1633), pp.20130162
    Description: Approximately half of all patients with multiple sclerosis (MS) experience cognitive dysfunction, including learning and memory impairment. Recent studies suggest that hippocampal pathology is involved, although the mechanisms underlying these deficits remain poorly understood. Evidence obtained from a mouse model of MS, the experimental autoimmune encephalomyelitis (EAE), suggests that in the hippocampus of EAE mice long-term potentiation (LTP) is favoured over long-term depression in response to repetitive synaptic activation, through a mechanism dependent on enhanced IL-1β released from infiltrating lymphocytes or activated microglia. Facilitated LTP during an immune-mediated attack might underlie functional recovery, but also cognitive deficits and excitotoxic neurodegeneration. Having identified that pro-inflammatory cytokines such as IL-1β can influence synaptic function and integrity in early MS, it is hoped that new treatments targeted towards preventing synaptic pathology can be developed.
    Keywords: Experimental Autoimmune Encephalomyelitis ; Hippocampus ; Interleukin-1β ; Long-Term Potentiation ; Multiple Sclerosis ; Synaptic Plasticity ; Models, Neurological ; Cytokines -- Metabolism ; Encephalomyelitis, Autoimmune, Experimental -- Physiopathology ; Hippocampus -- Pathology ; Long-Term Potentiation -- Physiology ; Multiple Sclerosis -- Physiopathology ; Synapses -- Physiology
    ISSN: 09628436
    E-ISSN: 1471-2970
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: PLoS ONE, 2012, Vol.7(9)
    Description: We examined the role of endogenous dopamine (DA) in regulating the number of intrinsic tyrosine hydroxylase-positive (TH + ) striatal neurons using mice at postnatal day (PND) 4 to 8, a period that corresponds to the developmental peak in the number of these neurons. We adopted the strategy of depleting endogenous DA by a 2-day treatment with α-methyl- p -tyrosine (αMpT, 150 mg/kg, i.p.). This treatment markedly increased the number of striatal TH + neurons, assessed by stereological counting, and the increase was highly correlated to the extent of DA loss. Interestingly, TH + neurons were found closer to the clusters of DA fibers after DA depletion, indicating that the concentration gradient of extracellular DA critically regulates the distribution of striatal TH + neurons. A single i.p. injection of the D1 receptor antagonist, SCH23390 (0.1 mg/kg), the D2/D3 receptor antagonist, raclopride (0.1 mg/kg), or the D4 receptor antagonist, L-745,870 (5 mg/kg) in mice at PND4 also increased the number of TH + neurons after 4 days. Treatment with the D1-like receptor agonist SKF38393 (10 mg/kg) or with the D2-like receptor agonist, quinpirole (1 mg/kg) did not change the number of TH + neurons. At least the effects of SCH23390 were prevented by a combined treatment with SKF38393. Immunohistochemical analysis indicated that striatal TH + neurons expressed D2 and D4 receptors, but not D1 receptors. Moreover, treatment with the α4β2 receptor antagonist dihydro-β-erythroidine (DHβE) (3.2 mg/kg) also increased the number of TH + neurons. The evidence that DHβE mimicked the action of SCH23390 in increasing the number of TH + neurons supports the hypothesis that activation of D1 receptors controls the number of striatal TH + neurons by enhancing the release of acetylcholine. These data demonstrate for the first time that endogenous DA negatively regulates the number of striatal TH + neurons by direct and indirect mechanisms mediated by multiple DA receptor subtypes.
    Keywords: Research Article ; Biology
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: 2012, Vol.7(9), p.e44025
    Description: We examined the role of endogenous dopamine (DA) in regulating the number of intrinsic tyrosine hydroxylase-positive (TH + ) striatal neurons using mice at postnatal day (PND) 4 to 8, a period that corresponds to the developmental peak in the number of these neurons. We adopted the strategy of depleting endogenous DA by a 2-day treatment with α-methyl- p -tyrosine (αMpT, 150 mg/kg, i.p.). This treatment markedly increased the number of striatal TH + neurons, assessed by stereological counting, and the increase was highly correlated to the extent of DA loss. Interestingly, TH + neurons were found closer to the clusters of DA fibers after DA depletion, indicating that the concentration gradient of extracellular DA critically regulates the distribution of striatal TH + neurons. A single i.p. injection of the D1 receptor antagonist, SCH23390 (0.1 mg/kg), the D2/D3 receptor antagonist, raclopride (0.1 mg/kg), or the D4 receptor antagonist, L-745,870 (5 mg/kg) in mice at PND4 also increased the number of TH + neurons after 4 days. Treatment with the D1-like receptor agonist SKF38393 (10 mg/kg) or with the D2-like receptor agonist, quinpirole (1 mg/kg) did not change the number of TH + neurons. At least the effects of SCH23390 were prevented by a combined treatment with SKF38393. Immunohistochemical analysis indicated that striatal TH + neurons expressed D2 and D4 receptors, but not D1 receptors. Moreover, treatment with the α4β2 receptor antagonist dihydro-β-erythroidine (DHβE) (3.2 mg/kg) also increased the number of TH + neurons. The evidence that DHβE mimicked the action of SCH23390 in increasing the number of TH + neurons supports the hypothesis that activation of D1 receptors controls the number of striatal TH + neurons by enhancing the release of acetylcholine. These data demonstrate for the first time that endogenous DA negatively regulates the number of striatal TH + neurons by direct and indirect mechanisms mediated by multiple DA receptor subtypes.
    Keywords: Research Article ; Biology ; Neuroscience ; Developmental Biology
    E-ISSN: 1932-6203
    Source: PLoS
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Nature Medicine, 2010, Vol.16(8), p.897
    Description: High amounts of glutamate are found in the brains of people with multiple sclerosis, an inflammatory disease marked by progressive demyelination. Glutamate might affect neuroinflammation via effects on immune cells. Knockout mice lacking metabotropic glutamate receptor-4 (mGluR4) were markedly vulnerable to experimental autoimmune encephalomyelitis (EAE, a mouse model of multiple sclerosis) and developed responses dominated by interleukin-17-producing T helper ([T.sub.H]17) cells. In dendritic cells (DCs) from those mice, defective mGluR4 signaling--which would normally decrease intracellular cAMP formation--biased [T.sub.H] cell commitment to the [T.sub.H]17 phenotype. In wild-type mice, mGluR4 was constitutively expressed in all peripheral DCs, and this expression increased after cell activation. Treatment of wild-type mice with a selective mGluR4 enhancer increased EAE resistance via regulatory T ([T.sub.reg]) cells. The high amounts of glutamate in neuroinflammation might reflect a counterregulatory mechanism that is protective in nature and might be harnessed therapeutically for restricting immunopathology in multiple sclerosis.
    Keywords: Multiple Sclerosis -- Risk Factors ; Multiple Sclerosis -- Care And Treatment ; Multiple Sclerosis -- Research ; Neurotransmitter Receptors -- Physiological Aspects ; Neurotransmitter Receptors -- Research ; T Cells -- Physiological Aspects ; T Cells -- Research;
    ISSN: 1078-8956
    E-ISSN: 1546170X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: PLoS ONE, 01 January 2013, Vol.8(1), p.e54666
    Description: Abnormal use-dependent synaptic plasticity is universally accepted as the main physiological correlate of memory deficits in neurodegenerative disorders. It is unclear whether synaptic plasticity deficits take place during neuroinflammatory diseases, such as multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis (EAE). In EAE mice, we found significant alterations of synaptic plasticity rules in the hippocampus. When compared to control mice, in fact, hippocampal long-term potentiation (LTP) induction was favored over long-term depression (LTD) in EAE, as shown by a significant rightward shift in the frequency-synaptic response function. Notably, LTP induction was also enhanced in hippocampal slices from control mice following interleukin-1β (IL-1β) perfusion, and both EAE and IL-1β inhibited GABAergic spontaneous inhibitory postsynaptic currents (sIPSC) without affecting glutamatergic transmission and AMPA/NMDA ratio. EAE was also associated with selective loss of GABAergic interneurons and with reduced gamma-frequency oscillations in the CA1 region of the hippocampus. Finally, we provided evidence that microglial activation in the EAE hippocampus was associated with IL-1β expression, and hippocampal slices from control mice incubated with activated microglia displayed alterations of GABAergic transmission similar to those seen in EAE brains, through a mechanism dependent on enhanced IL-1β signaling. These data may yield novel insights into the basis of cognitive deficits in EAE and possibly of MS.
    Keywords: Sciences (General)
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Neuron, 02 October 2013, Vol.80(1), pp.72-79
    Description: A novel experience induces the gene as well as plasticity of CA1 neural networks. To understand how these are linked, we briefly exposed GFP reporter mice of transcription to a novel environment. Excitatory synaptic function of CA1 neurons with recent in vivo induction ( GFP+) was similar to neighboring noninduced neurons. However, in response to group 1 metabotropic glutamate receptor (mGluR) activation, GFP+ neurons preferentially displayed long-term synaptic depression (mGluR-LTD) and robust increases in dendritic Arc protein. mGluR-LTD in GFP+ neurons required rapid protein synthesis and , suggesting that dendritic translation of Arc underlies the priming of mGluR-LTD. In support of this idea, novelty exposure increased messenger RNA in CA1 dendrites and promoted mGluR-induced translation of Arc in hippocampal synaptoneurosomes. Repeated experience suppressed synaptic transmission onto GFP+ neurons and occluded mGluR-LTD ex vivo. mGluR-LTD priming in neurons with similar activation history may contribute to encoding a novel environment. The consequence of experience-induced Arc gene on synaptic function is unknown. Jakkamsetti et al. find that novelty-induced Arc primes CA1 neurons for mGluR-dependent long-term synaptic depression through rapid translation of dendritic Arc mRNA, which may contribute to encoding of a salient experience.
    Keywords: Biology ; Anatomy & Physiology
    ISSN: 0896-6273
    E-ISSN: 1097-4199
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Immunologic Research, 2012, Vol.52(1), pp.157-168
    Description: Development of resistance to TRAIL-induced toxicity is one of the strategies used from tumor cells to escape destruction from the immune system. This process may occur through aberrant expression of functional receptors, overexpression of decoy receptors on tumor cell membrane, or malfunctioning of downstream signals triggered by specific ligation of TRAIL. Numerous cytostatic, but also noncytostatic, drugs like protease inhibitors and NO-hybridized molecules have been shown to revert sensitivity of neoplastic cells to TRAIL by means of different mechanisms. This paper will review the possible routes of reconstitution of sensitivity to TRAIL-mediated immune response by specific modulation of different signals responsible for the development of resistance at both the membrane and the intracellular levels. Moreover, we will review and suggest novel strategies, aimed at resetting immune cell efficiency in cancer treatment.
    Keywords: TRAIL resistance ; Death receptors ; Saquinavir-NO
    ISSN: 0257-277X
    E-ISSN: 1559-0755
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: PLoS ONE, 01 January 2011, Vol.6(1), p.e16447
    Description: The identification of mechanisms that mediate stress-induced hippocampal damage may shed new light into the pathophysiology of depressive disorders and provide new targets for therapeutic intervention. We focused on the secreted glycoprotein Dickkopf-1 (Dkk-1), an inhibitor of the canonical Wnt pathway, involved in neurodegeneration. Mice exposed to mild restraint stress showed increased hippocampal levels of Dkk-1 and reduced expression of β-catenin, an intracellular protein positively regulated by the canonical Wnt signalling pathway. In adrenalectomized mice, Dkk-1 was induced by corticosterone injection, but not by exposure to stress. Corticosterone also induced Dkk-1 in mouse organotypic hippocampal cultures and primary cultures of hippocampal neurons and, at least in the latter model, the action of corticosterone was reversed by the type-2 glucocorticoid receptor antagonist mifepristone. To examine whether induction of Dkk-1 was causally related to stress-induced hippocampal damage, we used doubleridge mice, which are characterized by a defective induction of Dkk-1. As compared to control mice, doubleridge mice showed a paradoxical increase in basal hippocampal Dkk-1 levels, but no Dkk-1 induction in response to stress. In contrast, stress reduced Dkk-1 levels in doubleridge mice. In control mice, chronic stress induced a reduction in hippocampal volume associated with neuronal loss and dendritic atrophy in the CA1 region, and a reduced neurogenesis in the dentate gyrus. Doubleridge mice were resistant to the detrimental effect of chronic stress and, instead, responded to stress with increases in dendritic arborisation and neurogenesis. Thus, the outcome of chronic stress was tightly related to changes in Dkk-1 expression in the hippocampus. These data indicate that induction of Dkk-1 is causally related to stress-induced hippocampal damage and provide the first evidence that Dkk-1 expression is regulated by corticosteroids in the central nervous system. Drugs that rescue the canonical Wnt pathway may attenuate hippocampal damage in major depression and other stress-related disorders.
    Keywords: Sciences (General)
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Molecular Medicine Reports, May-June 2011, Vol.4(3), pp.471-476
    Description: Prenatal androgens have important organizing effects on the development and future behavior of the brain. The second-to-fourth digit length ratio (2D:4D) has been proposed as a marker of these prenatal androgen effects, with a relatively longer fourth finger indicating higher prenatal androgen exposure. 2D:4D has been shown to predict the success of men who play sports and of financial traders. However, to date little is known regarding the effects of prenatal androgens on academic performance, for example, admission to and success in a highly competitive university system such as the state-run Italian medical schools. Here, we report the findings of a study conducted at the University of Catania Medical School, Italy, in which the 2D:4D ratio was sampled in a group of 48 male students. The 2D:4D ratios were found to be correlated with the performance of the students on the admission test to the medical school, their salivary testosterone levels and their aggressiveness; however, no correlation was observed with the mean score on exams during the course of study. Our results suggest that pre and/or postnatal androgens increase performance in situations that require prompt decision-making and the ability to take risks, but do not influence performance when a more analytical and planned approach is called for.
    Keywords: Biology;
    ISSN: 1791-2997
    E-ISSN: 17913004
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Acta Histochemica, October 2015, Vol.117(8), pp.824-828
    Description: Recent immunohistochemical analyses have showed that cyclin D1 is expressed in soft tissue Ewing's sarcoma/peripheral neuroectodermal tumor (PNET) of childhood and adolescents, while it is undetectable in both embryonal and alveolar rhabdomyosarcoma. In the present paper, microarray analysis provided evidence of a significant upregulation of cyclin D1 in Ewing's sarcoma as compared to normal tissues. In addition, we confirmed our previous findings of a significant over-expression of cyclin D1 in Ewing sarcoma as compared to rhabdomyosarcoma. Bioinformatic analysis also allowed to identify some other genes, strongly correlated to cyclin D1, which, although not previously studied in pediatric tumors, could represent novel markers for the diagnosis and prognosis of Ewing's sarcoma/PNET. The data herein provided support not only the use of cyclin D1 as a diagnostic marker of Ewing sarcoma/PNET but also the possibility of using drugs targeting cyclin D1 as potential therapeutic strategies.
    Keywords: Cyclin D1 ; Ewing'S Sarcoma/Peripheral Primitive Neuroectodermal Tumor ; Rhabdomyosarcoma ; Microarray ; Bioinformatic Analysis ; Biology ; Chemistry
    ISSN: 0065-1281
    E-ISSN: 1618-0372
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages