Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biology And Life Sciences
Type of Medium
Language
Year
  • 1
    In: PLoS ONE, 2018, Vol.13(10)
    Description: Public hospital spending consumes a large share of government expenditure in many countries. The large cost variability observed between hospitals and also between patients in the same hospital has fueled the belief that consumption of a significant portion of this funding may result in no clinical benefit to patients, thus representing waste. Accurate identification of the main hospital cost drivers and relating them quantitatively to the observed cost variability is a necessary step towards identifying and reducing waste. This study identifies prime cost drivers in a typical, mid-sized Australian hospital and classifies them as sources of cost variability that are either warranted or not warranted—and therefore contributing to waste. An essential step is dimension reduction using Principal Component Analysis to pre-process the data by separating out the low value ‘noise’ from otherwise valuable information. Crucially, the study then adjusts for possible co-linearity of different cost drivers by the use of the sparse group lasso technique. This ensures reliability of the findings and represents a novel and powerful approach to analysing hospital costs. Our statistical model included 32 potential cost predictors with a sample size of over 50,000 hospital admissions. The proportion of cost variability potentially not clinically warranted was estimated at 33.7%. Given the financial footprint involved, once the findings are extrapolated nationwide, this estimation has far-reaching significance for health funding policy.
    Keywords: Research Article ; Medicine And Health Sciences ; Research And Analysis Methods ; Physical Sciences ; People And Places ; Medicine And Health Sciences ; Medicine And Health Sciences ; Research And Analysis Methods ; Physical Sciences ; Physical Sciences ; Physical Sciences ; Biology And Life Sciences ; Medicine And Health Sciences ; Computer And Information Sciences
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: PLoS ONE, 2014, Vol.9(8)
    Description: We consider a Markov process in continuous time with a finite number of discrete states. The time-dependent probabilities of being in any state of the Markov chain are governed by a set of ordinary differential equations, whose dimension might be large even for trivial systems. Here, we derive a reduced ODE set that accurately approximates the probabilities of subspaces of interest with a known error bound. Our methodology is based on model reduction by balanced truncation and can be considerably more computationally efficient than solving the chemical master equation directly. We show the applicability of our method by analysing stochastic chemical reactions. First, we obtain a reduced order model for the infinitesimal generator of a Markov chain that models a reversible, monomolecular reaction. Later, we obtain a reduced order model for a catalytic conversion of substrate to a product (a so-called Michaelis-Menten mechanism), and compare its dynamics with a rapid equilibrium approximation method. For this example, we highlight the savings on the computational load obtained by means of the reduced-order model. Furthermore, we revisit the substrate catalytic conversion by obtaining a lower-order model that approximates the probability of having predefined ranges of product molecules. In such an example, we obtain an approximation of the output of a model with 5151 states by a reduced model with 16 states. Finally, we obtain a reduced-order model of the Brusselator.
    Keywords: Research Article ; Biology And Life Sciences ; Computer And Information Sciences ; Engineering And Technology ; Physical Sciences
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: PLoS ONE, 2014, Vol.9(5)
    Description: To obtain predictive genes with lower redundancy and better interpretability, a hybrid gene selection method encoding prior information is proposed in this paper. To begin with, the prior information referred to as gene-to-class sensitivity (GCS) of all genes from microarray data is exploited by a single hidden layered feedforward neural network (SLFN). Then, to select more representative and lower redundant genes, all genes are grouped into some clusters by K-means method, and some low sensitive genes are filtered out according to their GCS values. Finally, a modified binary particle swarm optimization (BPSO) encoding the GCS information is proposed to perform further gene selection from the remainder genes. For considering the GCS information, the proposed method selects those genes highly correlated to sample classes. Thus, the low redundant gene subsets obtained by the proposed method also contribute to improve classification accuracy on microarray data. The experiments results on some open microarray data verify the effectiveness and efficiency of the proposed approach.
    Keywords: Research Article ; Biology And Life Sciences ; Computer And Information Sciences ; Physical Sciences ; Research And Analysis Methods
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: PLoS ONE, 2014, Vol.9(6)
    Description: Complex networks have recently become the focus of research in many fields. Their structure reveals crucial information for the nodes, how they connect and share information. In our work we analyze protein interaction networks as complex networks for their functional modular structure and later use that information in the functional annotation of proteins within the network. We propose several graph representations for the protein interaction network, each having different level of complexity and inclusion of the annotation information within the graph. We aim to explore what the benefits and the drawbacks of these proposed graphs are, when they are used in the function prediction process via clustering methods. For making this cluster based prediction, we adopt well established approaches for cluster detection in complex networks using most recent representative algorithms that have been proven as efficient in the task at hand. The experiments are performed using a purified and reliable Saccharomyces cerevisiae protein interaction network, which is then used to generate the different graph representations. Each of the graph representations is later analysed in combination with each of the clustering algorithms, which have been possibly modified and implemented to fit the specific graph. We evaluate results in regards of biological validity and function prediction performance. Our results indicate that the novel ways of presenting the complex graph improve the prediction process, although the computational complexity should be taken into account when deciding on a particular approach.
    Keywords: Research Article ; Biology And Life Sciences ; Computer And Information Sciences ; Physical Sciences
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: PLoS ONE, 2018, Vol.13(10)
    Description: Single-cell RNA sequencing (scRNA-seq) is an emerging technology for profiling the gene expression of thousands of cells at the single cell resolution. Currently, the labeling of cells in an scRNA-seq dataset is performed by manually characterizing clusters of cells or by fluorescence-activated cell sorting (FACS). Both methods have inherent drawbacks: The first depends on the clustering algorithm used and the knowledge and arbitrary decisions of the annotator, and the second involves an experimental step in addition to the sequencing and cannot be incorporated into the higher throughput scRNA-seq methods. We therefore suggest a different approach for cell labeling, namely, classifying cells from scRNA-seq datasets by using a model transferred from different (previously labeled) datasets. This approach can complement existing methods, and–in some cases–even replace them. Such a transfer-learning framework requires selecting informative features and training a classifier. The specific implementation for the framework that we propose, designated ''CaSTLe–classification of single cells by transfer learning,'' is based on a robust feature engineering workflow and an XGBoost classification model built on these features. Evaluation of CaSTLe against two benchmark feature-selection and classification methods showed that it outperformed the benchmark methods in most cases and yielded satisfactory classification accuracy in a consistent manner. CaSTLe has the additional advantage of being parallelizable and well suited to large datasets. We showed that it was possible to classify cell types using transfer learning, even when the databases contained a very small number of genes, and our study thus indicates the potential applicability of this approach for analysis of scRNA-seq datasets.
    Keywords: Research Article ; Biology And Life Sciences ; Medicine And Health Sciences ; Biology And Life Sciences ; Biology And Life Sciences ; Biology And Life Sciences ; Medicine And Health Sciences ; Biology And Life Sciences ; Medicine And Health Sciences ; Computer And Information Sciences ; Engineering And Technology ; Biology And Life Sciences ; Research And Analysis Methods ; Biology And Life Sciences ; Computer And Information Sciences
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: PLoS ONE, 2014, Vol.9(4)
    Description: Inferring gene regulatory networks (GRNs) is a major issue in systems biology, which explicitly characterizes regulatory processes in the cell. The Path Consistency Algorithm based on Conditional Mutual Information (PCA-CMI) is a well-known method in this field. In this study, we introduce a new algorithm (IPCA-CMI) and apply it to a number of gene expression data sets in order to evaluate the accuracy of the algorithm to infer GRNs. The IPCA-CMI can be categorized as a hybrid method, using the PCA-CMI and Hill-Climbing algorithm (based on MIT score). The conditional dependence between variables is determined by the conditional mutual information test which can take into account both linear and nonlinear genes relations. IPCA-CMI uses a score and search method and defines a selected set of variables which is adjacent to one of or Y . This set is used to determine the dependency between X and Y . This method is compared with the method of evaluating dependency by PCA-CMI in which the set of variables adjacent to both X and Y , is selected. The merits of the IPCA-CMI are evaluated by applying this algorithm to the DREAM3 Challenge data sets with n variables and n samples ( ) and to experimental data from Escherichia coil containing 9 variables and 9 samples. Results indicate that applying the IPCA-CMI improves the precision of learning the structure of the GRNs in comparison with that of the PCA-CMI.
    Keywords: Research Article ; Biology And Life Sciences ; Computer And Information Sciences ; Physical Sciences
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: PLoS ONE, 2014, Vol.9(8)
    Description: Background The spread of Bluetongue virus (BTV) among ruminants is caused by movement of infected host animals or by movement of infected Culicoides midges, the vector of BTV. Biologically plausible models of Culicoides dispersal are necessary for predicting the spread of BTV and are important for planning control and eradication strategies. Methods A spatially-explicit simulation model which captures the two underlying population mechanisms, population dynamics and movement, was developed using extensive data from a trapping program for C. brevitarsis on the east coast of Australia. A realistic midge flight sub-model was developed and the annual incursion and population establishment of C. brevitarsis was simulated. Data from the literature was used to parameterise the model. Results The model was shown to reproduce the spread of C. brevitarsis southwards along the east Australian coastline in spring, from an endemic population to the north. Such incursions were shown to be reliant on wind-dispersal; Culicoides midge active flight on its own was not capable of achieving known rates of southern spread, nor was re-emergence of southern populations due to overwintering larvae. Data from midge trapping programmes were used to qualitatively validate the resulting simulation model. Conclusions The model described in this paper is intended to form the vector component of an extended model that will also include BTV transmission. A model of midge movement and population dynamics has been developed in sufficient detail such that the extended model may be used to evaluate the timing and extent of BTV outbreaks. This extended model could then be used as a platform for addressing the effectiveness of spatially targeted vaccination strategies or animal movement bans as BTV spread mitigation measures, or the impact of climate change on the risk and extent of outbreaks. These questions involving incursive Culicoides spread cannot be simply addressed with non-spatial models.
    Keywords: Research Article ; Biology And Life Sciences ; Computer And Information Sciences ; Medicine And Health Sciences
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: PLoS ONE, 2018, Vol.13(5)
    Description: The availability of large-scale screens of host-virus interaction interfaces enabled the topological analysis of viral protein targets of the host. In particular, host proteins that bind viral proteins are generally hubs and proteins with high betweenness centrality. Recently, other topological measures were introduced that a virus may tap to infect a host cell. Utilizing experimentally determined sets of human protein targets from Herpes, Hepatitis, HIV and Influenza, we pooled molecular interactions between proteins from different pathway databases. Apart from a protein’s degree and betweenness centrality, we considered a protein’s pathway participation, ability to topologically control a network and protein PageRank index. In particular, we found that proteins with increasing values of such measures tend to accumulate viral targets and distinguish viral targets from non-targets. Furthermore, all such topological measures strongly correlate with the occurrence of a given protein in different pathways. Building a random forest classifier that is based on such topological measures, we found that protein PageRank index had the highest impact on the classification of viral (non-)targets while proteins' ability to topologically control an interaction network played the least important role.
    Keywords: Research Article ; Computer And Information Sciences ; Biology And Life Sciences ; Physical Sciences ; Research And Analysis Methods ; Biology And Life Sciences ; Biology And Life Sciences ; Medicine And Health Sciences ; Biology And Life Sciences ; Biology And Life Sciences ; Biology And Life Sciences ; Medicine And Health Sciences ; Biology And Life Sciences ; Computer And Information Sciences ; Biology And Life Sciences ; Medicine And Health Sciences ; Biology And Life Sciences ; Biology And Life Sciences ; Medicine And Health Sciences ; Biology And Life Sciences ; Biology And Life Sciences ; Biology And Life Sciences ; Biology And Life Sciences ; Medicine And Health Sciences ; Biology And Life Sciences ; Medicine And Health Sciences
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: PLoS ONE, 2017, Vol.12(10)
    Description: High-throughput gene expression data are often obtained from pure or complex (heterogeneous) biological samples. In the latter case, data obtained are a mixture of different cell types and the heterogeneity imposes some difficulties in the analysis of such data. In order to make conclusions on gene expresssion data obtained from heterogeneous samples, methods such as microdissection and flow cytometry have been employed to physically separate the constituting cell types. However, these manual approaches are time consuming when measuring the responses of multiple cell types simultaneously. In addition, exposed samples, on many occasions, end up being contaminated with external perturbations and this may result in an altered yield of molecular content. In this paper, we model the heterogeneous gene expression data using a Bayesian framework, treating the cell type proportions and the cell-type specific expressions as the parameters of the model. Specifically, we present a novel sequential Monte Carlo (SMC) sampler for estimating the model parameters by approximating their posterior distributions with a set of weighted samples. The SMC framework is a robust and efficient approach where we construct a sequence of artificial target (posterior) distributions on spaces of increasing dimensions which admit the distributions of interest as marginals. The proposed algorithm is evaluated on simulated datasets and publicly available real datasets, including Affymetrix oligonucleotide arrays and national center for biotechnology information (NCBI) gene expression omnibus (GEO), with varying number of cell types. The results obtained on all datasets show a superior performance with an improved accuracy in the estimation of cell type proportions and the cell-type specific expressions, and in addition, more accurate identification of differentially expressed genes when compared to other widely known methods for blind decomposition of heterogeneous gene expression data such as Dsection and the nonnegative matrix factorization (NMF) algorithms. MATLAB implementation of the proposed SMC algorithm is available to download at https://github.com/moyanre/smcgenedeconv.git .
    Keywords: Research Article ; Biology And Life Sciences ; Physical Sciences ; Research And Analysis Methods ; Biology And Life Sciences ; Medicine And Health Sciences ; Science Policy ; Physical Sciences ; Physical Sciences ; Physical Sciences ; Computer And Information Sciences ; Engineering And Technology
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: PLoS ONE, 01 January 2015, Vol.10(1), p.e0116029
    Description: Changes in the airway microbiome may be important in the pathophysiology of chronic lung disease in patients with cystic fibrosis. However, little is known about the microbiome in early cystic fibrosis lung disease and the relationship between the microbiomes from different niches in the upper and lower airways. Therefore, in this cross-sectional study, we examined the relationship between the microbiome in the upper (nose and throat) and lower (sputum) airways from children with cystic fibrosis using next generation sequencing. Our results demonstrate a significant difference in both α and β-diversity between the nose and the two other sampling sites. The nasal microbiome was characterized by a polymicrobial community while the throat and sputum communities were less diverse and dominated by a few operational taxonomic units. Moreover, sputum and throat microbiomes were closely related especially in patients with clinically stable lung disease. There was a high inter-individual variability in sputum samples primarily due to a decrease in evenness linked to increased abundance of potential respiratory pathogens such as Pseudomonas aeruginosa. Patients with chronic Pseudomonas aeruginosa infection exhibited a less diverse sputum microbiome. A high concordance was found between pediatric and adult sputum microbiomes except that Burkholderia was only observed in the adult cohort. These results indicate that an adult-like lower airways microbiome is established early in life and that throat swabs may be a good surrogate in clinically stable children with cystic fibrosis without chronic Pseudomonas aeruginosa infection in whom sputum sampling is often not feasible.
    Keywords: Sciences (General)
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages