Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chorioamnionitis
Type of Medium
Language
Year
  • 1
    In: The Journal of Infectious Diseases, 2017, Vol. 215(4), pp.653-657
    Description: Staphylococcus aureus, a metabolically flexible gram-positive pathogen, causes infections in a variety of tissues. Recent evidence implicates S. aureus as an emerging cause of chorioamnionitis and premature rupture of membranes, which are associated with preterm birth and neonatal disease. We demonstrate here that S. aureus infects and forms biofilms on the choriodecidual surface of explanted human gestational membranes. Concomitantly, S. aureus elicits the production of proinflammatory cytokines, which could ultimately perturb maternal-fetal tolerance during pregnancy. Therefore, targeting the immunological response to S. aureus infection during pregnancy could attenuate disease among infected individuals, especially in the context of antibiotic resistance.
    Keywords: 〈Kwd〉 〈Italic Toggle="Yes"〉Staphylococcus Aureus〈/Italic〉 〈/Kwd〉 ; Gestational Membranes ; Cytokine
    ISSN: 0022-1899
    E-ISSN: 1537-6613
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: mBio, 01 November 2018, Vol.9(6), p.e02084-18
    Description: Streptococcus agalactiae, also known as group B Streptococcus (GBS), is a common pathogen during pregnancy where infection can result in chorioamnionitis, preterm premature rupture of membranes (PPROM), preterm labor, stillbirth, and neonatal sepsis. Mechanisms by which GBS infection results...
    Keywords: Streptococcus Agalactiae ; Extracellular Traps ; Group B Streptococcus ; Macrophages ; Matrix Metalloproteinase ; Biology
    ISSN: 21612129
    E-ISSN: 2150-7511
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: American Journal of Reproductive Immunology, October 2018, Vol.80(4), pp.n/a-n/a
    Description: Bacterial chorioamnionitis causes adverse pregnancy outcomes, yet host-microbial interactions are not well characterized within gestational membranes. The decidua, the outermost region of the membranes, is a potential point of entry for bacteria ascending from the vagina to cause chorioamnionitis. We sought to determine whether paracrine communication between decidual stromal cells and macrophages shaped immune responses to microbial sensing. Decidual cell-macrophage interactions were modeled in vitro utilizing decidualized, telomerase-immortalized human endometrial stromal cells (dTHESCs) and phorbol ester-differentiated THP-1 macrophage-like cells. The production of inflammatory mediators in response to LPS was monitored by ELISA for both cell types, while phagocytosis of bacterial pathogens (Escherichia coli and Group B Streptococcus (GBS)) was measured in THP-1 cells or primary human placental macrophages. Diclofenac, a non-selective cyclooxygenase inhibitor, and prostaglandin E (PGE ) were utilized to interrogate prostaglandins as decidual cell-derived paracrine immunomodulators. A mouse model of ascending chorioamnionitis caused by GBS was utilized to assess the colocalization of bacteria and macrophages in vivo and assess PGE production. In response to LPS, dTHESC and THP-1 coculture demonstrated enhancement of most inflammatory mediators, but a potent suppression of macrophage TNF-α generation was observed. This appeared to reflect a paracrine-mediated effect of decidual cell-derived PGE . In mice with GBS chorioamnionitis, macrophages accumulated at sites of bacterial invasion with increased PGE in amniotic fluid, suggesting such paracrine effects might hold relevance in vivo. These data suggest key roles for decidual stromal cells in modulating tissue responses to microbial threat through release of PGE .
    Keywords: Chorioamnionitis ; Fetal Membranes ; Infection ; Microfluidics ; Pregnancy ; Prostaglandins
    ISSN: 1046-7408
    E-ISSN: 1600-0897
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Frontiers in cellular and infection microbiology, 2017, Vol.7, pp.19
    Description: , or Group B (GBS), is a gram-positive bacterial pathogen associated with infection during pregnancy and is a major cause of morbidity and mortality in neonates. Infection of the extraplacental membranes surrounding the developing fetus, a condition known as chorioamnionitis, is characterized histopathologically by profound infiltration of polymorphonuclear cells (PMNs, neutrophils) and greatly increases the risk for preterm labor, stillbirth, or neonatal GBS infection. The advent of animal models of chorioamnionitis provides a powerful tool to study host-pathogen relationships and . The purpose of this study was to evaluate the innate immune response elicited by GBS and evaluate how antimicrobial strategies elaborated by these innate immune cells affect bacteria. Our work using a mouse model of GBS ascending vaginal infection during pregnancy reveals that clinically isolated GBS has the capacity to invade reproductive tissues and elicit host immune responses including infiltration of PMNs within the choriodecidua and placenta during infection, mirroring the human condition. Upon interacting with GBS, murine neutrophils elaborate DNA-containing extracellular traps, which immobilize GBS and are studded with antimicrobial molecules including lactoferrin. Exposure of GBS to holo- or apo-forms of lactoferrin reveals that the iron-sequestration activity of lactoferrin represses GBS growth and viability in a dose-dependent manner. Together, these data indicate that the mouse model of ascending infection is a useful tool to recapitulate human models of GBS infection during pregnancy. Furthermore, this work reveals that neutrophil extracellular traps ensnare GBS and repress bacterial growth via deposition of antimicrobial molecules, which drive nutritional immunity via metal sequestration strategies.
    Keywords: Streptococcus Agalactiae ; Group B Streptococcus ; Metal ; Neutrophils ; Pregnancy ; Extracellular Traps ; Immunity, Innate ; Neutrophil Infiltration ; Mucous Membrane -- Pathology ; Reproductive Tract Infections -- Pathology ; Streptococcus Agalactiae -- Pathogenicity
    E-ISSN: 2235-2988
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Biophotonics, September 2019, Vol.12(9), pp.n/a-n/a
    Description: , also known as Group B (GBS), is a major cause of chorioamnionitis and neonatal sepsis. This study evaluates Raman spectroscopy (RS) to identify spectral characteristics of infection and differentiate GBS from and during ex vivo infection of human fetal membrane tissues. Unique spectral features were identified from colonies grown on agar and infected fetal membrane tissues. Multinomial logistic regression analysis accurately identified GBS infected tissues with 100.0% sensitivity and 88.9% specificity. Together, these findings support further investigation into the use of RS as an emerging microbiologic diagnostic tool and intrapartum screening test for GBS carriage. Current methods to screen Group B (GBS), a major cause of chorioamnionitis and neonatal sepsis, do not provide accurate, sensitive readings. Raman microspectroscopy combined with logistic regression was utilized to investigate a GBS infection model of human fetal membranes ex vivo. Tissue infected with GBS was successfully distinguished from non‐infected, infected, and infected tissue. These findings motivate the development of Raman spectroscopy as a diagnostic tool for intrapartum screening of GBS.
    Keywords: Biofilms ; Chorioamnionitis ; Gbs ; Group B Streptococcus ; Raman Spectroscopy ; Streptococcus Agalactiae
    ISSN: 1864-063X
    E-ISSN: 1864-0648
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: American Journal of Reproductive Immunology, March 2017, Vol.77(3), pp.n/a-n/a
    Description: Chorioamnionitis is an acute inflammation of the gestational (extraplacental) membranes, most commonly caused by ascending microbial infection. It is associated with adverse neonatal outcomes including preterm birth, neonatal sepsis, and cerebral palsy. The decidua is the outermost layer of the gestational membranes and is likely an important initial site of contact with microbes during ascending infection. However, little is known about how decidual stromal cells (s) respond to microbial threat. Defining the contributions of individual cell types to the complex medley of inflammatory signals during chorioamnionitis could lead to improved interventions aimed at halting this disease. We review available published data supporting the role for s in responding to microbial infection, with a special focus on their expression of pattern recognition receptors and evidence of their responsiveness to pathogen sensing. While s likely play an important role in sensing and responding to infection during the pathogenesis of chorioamnionitis, important knowledge gaps and areas for future research are highlighted.
    Keywords: Chorioamnionitis ; Decidual Stromal Cells ; Infection ; Microbes ; Pathogen Recognition
    ISSN: 1046-7408
    E-ISSN: 1600-0897
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages