Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Geoderma, 01 July 2019, Vol.345, pp.63-71
    Description: Soil structure is not static but undergoes continuous changes due to a wide range of biotic and abiotic drivers such as bioturbation and the mechanical disturbance by tillage. This continuous alteration of soil structure beyond the pure swelling and shrinking of some stable structure is what we refer to as soil structure dynamics. It has important consequences for carbon turnover in soil as it controls how quickly soil organic matter gets occluded from or exposed to mineralization. So far there are hardly any direct observations of the rate at which soil pores are formed and destroyed. Here we employ are recently introduced labeling approach for soil structure that measures how quickly the locations of small garnet particles get randomized in soil as a measure for soil structure dynamics. We investigate the effect of desiccation crack dynamics on pore space attributes in general and soils structure turnover in particular using X-ray microtomography for repeated wetting-drying cycles. This is explored for three different soils with a range of soil organic matter content, clay content and different clay mineralogy that were sieved to a certain aggregate size fraction (0.63–2 mm) and repacked at two different bulk density levels. The total magnitude of desiccation crack formation mainly depended on the clay content and clay mineralogy. Higher soil organic matter content led to a denser crack pattern with smaller aperture. Wetting-drying cycles did not only effect visible macroporosity (〉8 μm), but also unresolved mesoporosity. The changes in macroporosity were higher at lower bulk density. Most importantly, repeated wetting-drying cycles did not lead to a randomization of distances between garnet particles and pores. This demonstrates that former failure zones are reactivated during subsequent drying cycles. Hence, wetting-drying resulted in reversible particle displacement and therefore would not have triggered the exposure of occluded carbon that was not already exposed during the previous drying event.
    Keywords: Soil Structure ; Desiccation Cracks ; X-Ray Tomography ; Macropores ; Clay Mineralogy ; Carbon Turnover ; Agriculture
    ISSN: 0016-7061
    E-ISSN: 1872-6259
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Geoderma, 01 January 2019, Vol.333, pp.149-162
    Description: The capacity of soils to store organic carbon represents a key function of soils that is not only decisive for climate regulation but also affects other soil functions. Recent efforts to assess the impact of land management on soil functionality proposed that an indicator- or proxy-based approach is a promising alternative to quantify soil functions compared to time- and cost-intensive measurements, particularly when larger regions are targeted. The objective of this review is to identify measurable biotic or abiotic properties that control soil organic carbon (SOC) storage at different spatial scales and could serve as indicators for an efficient quantification of SOC. These indicators should enable both an estimation of actual SOC storage as well as a prediction of the SOC storage potential, which is an important aspect in land use and management planning. There are many environmental conditions that affect SOC storage at different spatial scales. We provide a thorough overview of factors from micro-scales (particles to pedons) to the global scale and discuss their suitability as indicators for SOC storage: clay mineralogy, specific surface area, metal oxides, Ca and Mg cations, microorganisms, soil fauna, aggregation, texture, soil type, natural vegetation, land use and management, topography, parent material and climate. As a result, we propose a set of indicators that allow for time- and cost-efficient estimates of actual and potential SOC storage from the local to the regional and subcontinental scale. As a key element, the fine mineral fraction was identified to determine SOC stabilization in most soils. The quantification of SOC can be further refined by including climatic proxies, particularly elevation, as well as information on land use, soil management and vegetation characteristics. To enhance its indicative power towards land management effects, further “functional soil characteristics”, particularly soil structural properties and changes in the soil microbial biomass pool should be included in this indicator system. The proposed system offers the potential to efficiently estimate the SOC storage capacity by means of simplified measures, such as soil fractionation procedures or infrared spectroscopic approaches.
    Keywords: Clay Mineralogy ; Specific Surface Area ; Metal Oxides ; Microorganisms ; Soil Fauna ; Soil Aggregation ; Soil Texture ; Soil Type ; Natural Vegetation ; Land Use and Management ; Topography ; Parent Material ; Climate ; Agriculture
    ISSN: 0016-7061
    E-ISSN: 1872-6259
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages