Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Climate Change
Type of Medium
Language
Year
  • 1
    Language: English
    In: Science of the Total Environment, 01 December 2015, Vol.536, pp.1045-1051
    Description: To access, purchase, authenticate, or subscribe to the full-text of this article, please visit this link: http://dx.doi.org/10.1016/j.scitotenv.2015.07.064 Byline: Martin Wiesmeier [wiesmeier@wzw.tum.de] (a,*), Rico Hubner (b), Ingrid Kogel-Knabner (a,c) Keywords Soil organic carbon; Climate change; Net primary productivity; Soil C input Highlights * C stocks in agricultural soils may be largely affected by climate change. * It is assumed that C stocks would increase due to an assumed increase of NPP. * However, crop statistics indicate stagnating yields of major crops since the 1990s. * Concurrently stagnating C inputs would lead to C decreases in the long-term. * Indications for declining agricultural C stocks were already found. Abstract The carbon (C) balance of agricultural soils may be largely affected by climate change. Increasing temperatures are discussed to cause a loss of soil organic carbon (SOC) due to enhanced decomposition of soil organic matter, which has a high intrinsic temperature sensitivity. On the other hand, several modeling studies assumed that potential SOC losses would be compensated or even outperformed by an increased C input by crop residues into agricultural soils. This assumption was based on a predicted general increase of net primary productivity (NPP) as a result of the CO.sub.2 fertilization effect and prolonged growing seasons. However, it is questionable if the crop C input into agricultural soils can be derived from NPP predictions of vegetation models. The C input in European croplands is largely controlled by the agricultural management and was strongly related to the development of crop yields in the last decades. Thus, a glance at past yield development will probably be more instructive for future estimations of the C input than previous modeling approaches based on NPP predictions. An analysis of European yield statistics indicated that yields of wheat, barley and maize are stagnating in Central and Northern Europe since the 1990s. The stagnation of crop yields can probably be related to a fundamental change of the agricultural management and to climate change effects. It is assumed that the soil C input is concurrently stagnating which would necessarily lead to a decrease of agricultural SOC stocks in the long-term given a constant temperature increase. Remarkably, for almost all European countries that are faced with yield stagnation indications for agricultural SOC decreases were already found. Potentially adverse effects of yield stagnation on the C balance of croplands call for an interdisciplinary investigation of its causes and a comprehensive monitoring of SOC stocks in agricultural soils of Europe. Author Affiliation: (a) Lehrstuhl fur Bodenkunde, Department fur Okologie und Okosystemmanagement, Wissenschaftszentrum Weihenstephan fur Ernahrung, Landnutzung und Umwelt, Technische Universitat Munchen, 85350 Freising-Weihenstephan, Germany (b) Lehrstuhl fur Strategie und Management der Landschaftsentwicklung, Department fur Okologie und Okosystemmanagement, Wissenschaftszentrum Weihenstephan fur Ernahrung, Landnutzung und Umwelt, Technische Universitat Munchen, 85350 Freising-Weihenstephan, Germany (c) Institute for Advanced Study, Technische Universitat Munchen, Lichtenbergstr. 2a, 85748 Garching, Germany * Corresponding author. Article History: Received 23 April 2015; Revised 12 July 2015; Accepted 13 July 2015 (miscellaneous) Editor: D. Barcelo
    Keywords: Soil Organic Carbon ; Climate Change ; Net Primary Productivity ; Soil C Input ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature, 2011, Vol.478(7367), p.49
    Description: Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily—and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming. Journal Article.
    Keywords: Environmental Sciences Geosciences;
    ISSN: 0028-0836
    E-ISSN: 14764687
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Global Change Biology, October 2015, Vol.21(10), pp.3836-3845
    Description: Organic carbon () sequestration in degraded semi‐arid environments by improved soil management is assumed to contribute substantially to climate change mitigation. However, information about the soil organic carbon () sequestration potential in steppe soils and their current saturation status remains unknown. In this study, we estimated the storage capacity of semi‐arid grassland soils on the basis of remote, natural steppe fragments in northern China. Based on the maximum saturation of silt and clay particles 〈20 μm, sequestration potentials of degraded steppe soils (grazing land, arable land, eroded areas) were estimated. The analysis of natural grassland soils revealed a strong linear regression between the proportion of the fine fraction and its content, confirming the importance of silt and clay particles for stabilization in steppe soils. This relationship was similar to derived regressions in temperate and tropical soils but on a lower level, probably due to a lower C input and different clay mineralogy. In relation to the estimated storage capacity, degraded steppe soils showed a high saturation of 78–85% despite massive losses due to unsustainable land use. As a result, the potential of degraded grassland soils to sequester additional was generally low. This can be related to a relatively high contribution of labile , which is preferentially lost in the course of soil degradation. Moreover, wind erosion leads to substantial loss of silt and clay particles and consequently results in a direct loss of the ability to stabilize additional . Our findings indicate that the loss in semi‐arid environments induced by intensive land use is largely irreversible. Observed increases after improved land management mainly result in an accumulation of labile prone to land use/climate changes and therefore cannot be regarded as contribution to long‐term sequestration.
    Keywords: Climate Change ; Fine Fraction ; Soil Organic Carbon ; Soil Texture ; Steppe Soils
    ISSN: 1354-1013
    E-ISSN: 1365-2486
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: PLoS ONE, 2014, Vol.9(12)
    Description: Ongoing climate change will lead to more extreme weather events, including severe drought periods and intense drying rewetting cycles. This will directly influence microbial nitrogen (N) turnover rates in soil by changing the water content and the oxygen partial pressure. Therefore, a space for time climate change experiment was conducted by transferring intact beech seedling-soil mesocosms from a northwest (NW) exposed site, representing today's climatic conditions, to a southwest (SW) exposed site, providing a model climate for future conditions with naturally occurring increased soil temperature (+0.8°C in average). In addition, severe drought and intense rainfall was simulated by a rainout shelter at SW and manual rewetting after 39 days drought, respectively. Soil samples were taken in June, at the end of the drought period (August), 24 and 72 hours after rewetting (August) and after a regeneration period of four weeks (September). To follow dynamics of bacterial and archaeal communities involved in N turnover, abundance and activity of nitrifiers, denitrifiers, N 2 -fixing microbes and N-mineralizers was analyzed based on marker genes and the related transcripts by qPCR from DNA and RNA directly extracted from soil. Abundance of the transcripts was reduced under climate change with most pronounced effects for denitrification. Our results revealed that already a transfer from NW to SW without further treatment resulted in decreased cnor and nosZ transcripts, encoding for nitric oxide reductase and nitrous oxide reductase, respectively, while nirK transcripts, encoding for nitrite reductase, remained unaffected. Severe drought additionally led to reduced nirK and cnor transcripts at SW. After rewetting, nirK transcripts increased rapidly at both sites, while cnor and nosZ transcripts increased only at NW. Our data indicate that the climate change influences activity pattern of microbial communities involved in denitrification processes to a different extend, which may impact emission rates of the greenhouse gas N 2 O.
    Keywords: Research Article ; Biology And Life Sciences ; Ecology And Environmental Sciences
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Forest Ecology and Management, 01 May 2013, Vol.295, pp.162-172
    Description: ► SOC storage and its drivers of different forest types in Bavaria were investigated. ► No SOC differences were found between broadleaf, coniferous and mixed forests. ► Temperature and precipitation controlled total SOC storage in forests. ► No decrease of mineral SOC of broadleaf/mixed forests in regions with high temperatures. ► Incorporation of broadleaf species to prevent future SOC losses of coniferous forests. Temperate forest soils of central Europe are regarded as important pools for soil organic carbon (SOC) and thought to have a high potential for carbon (C) sequestration. However, comprehensive data on total SOC storage, particularly under different forest types, and its drivers is limited. In this study, we analyzed a forest data set of 596 completely sampled soil profiles down to the parent material or to a depth of 1 m within Bavaria in southeast Germany in order to determine representative SOC stocks under different forest types in central Europe and the impact of different environmental parameters. We calculated a total median SOC stock of 9.8 kg m which is considerably lower compared with many other inventories within central Europe that used modelled instead of measured soil properties. Statistical analyses revealed climate as controlling parameter for the storage of SOC with increasing stocks in cool, humid mountainous regions and a strong decrease in areas with higher temperatures. No significant differences of total SOC storage were found between broadleaf, coniferous and mixed forests. However, coniferous forests stored around 35% of total SOC in the labile organic layer that is prone to human disturbance, forest fires and rising temperatures. In contrast, mixed and broadleaf forests stored the major part of SOC in the mineral soil. Moreover, these two forest types showed unchanged or even slightly increased mineral SOC stocks with higher temperatures, whereas SOC stocks in mineral soils under coniferous forest were distinctly lower. We conclude that mixed and broadleaf forests are more advantageous for C sequestration than coniferous forests. An intensified incorporation of broadleaf species in extent coniferous forests of Bavaria would prevent substantial SOC losses as a result of rising temperatures in the course of climate change.
    Keywords: Tree Species Effect ; Soil Organic Matter ; Climate Change ; Forest Management ; Forestry ; Biology
    ISSN: 0378-1127
    E-ISSN: 1872-7042
    Source: ScienceDirect Journals (Elsevier)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Forest ecology and management, 2013, Vol.295, pp.162-172
    Description: Temperate forest soils of central Europe are regarded as important pools for soil organic carbon (SOC) and thought to have a high potential for carbon (C) sequestration. However, comprehensive data on total SOC storage, particularly under different forest types, and its drivers is limited. In this study, we analyzed a forest data set of 596 completely sampled soil profiles down to the parent material or to a depth of 1m within Bavaria in southeast Germany in order to determine representative SOC stocks under different forest types in central Europe and the impact of different environmental parameters. We calculated a total median SOC stock of 9.8kgm⁻² which is considerably lower compared with many other inventories within central Europe that used modelled instead of measured soil properties. Statistical analyses revealed climate as controlling parameter for the storage of SOC with increasing stocks in cool, humid mountainous regions and a strong decrease in areas with higher temperatures. No significant differences of total SOC storage were found between broadleaf, coniferous and mixed forests. However, coniferous forests stored around 35% of total SOC in the labile organic layer that is prone to human disturbance, forest fires and rising temperatures. In contrast, mixed and broadleaf forests stored the major part of SOC in the mineral soil. Moreover, these two forest types showed unchanged or even slightly increased mineral SOC stocks with higher temperatures, whereas SOC stocks in mineral soils under coniferous forest were distinctly lower. We conclude that mixed and broadleaf forests are more advantageous for C sequestration than coniferous forests. An intensified incorporation of broadleaf species in extent coniferous forests of Bavaria would prevent substantial SOC losses as a result of rising temperatures in the course of climate change. ; p. 162-172.
    Keywords: Soil Organic Carbon ; Coniferous Forests ; Parents ; Carbon Sequestration ; Soil Profiles ; Mineral Soils ; Environmental Impact ; Statistical Analysis ; Climate Change ; Temperature ; Temperate Soils ; Inventories ; Soil Properties ; Carbon ; Forest Fires ; Climate
    ISSN: 0378-1127
    Source: AGRIS (Food and Agriculture Organization of the United Nations)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Global Change Biology, February 2014, Vol.20(2), pp.653-665
    Description: Sequestration of atmospheric carbon (C) in soils through improved management of forest and agricultural land is considered to have high potential for global mitigation. However, the potential of soils to sequester soil organic carbon () in a stable form, which is limited by the stabilization of against microbial mineralization, is largely unknown. In this study, we estimated the C sequestration potential of soils in southeast Germany by calculating the potential saturation of silt and clay particles according to Hassink [ (1997) 77] on the basis of 516 soil profiles. The determination of the current content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long‐term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional . A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. A high proportion of sites with a high degree of apparent oversaturation revealed that in acidic, coarse‐textured soils the relation to silt and clay is not suitable to estimate the stable C saturation. A strong correlation of the C saturation deficit with temperature and precipitation allowed a spatial estimation of the C sequestration potential for Bavaria. In total, about 395 Mt CO‐equivalents could theoretically be stored in A horizons of cultivated soils – four times the annual emission of greenhouse gases in Bavaria. Although achieving the entire estimated C storage capacity is unrealistic, improved management of cultivated land could contribute significantly to mitigation. Moreover, increasing stocks have additional benefits with respect to enhanced soil fertility and agricultural productivity.
    Keywords: Agricultural Management ; Climate Change ; Mitigation ; Soil Organic Carbon Stocks ; Soil Fractionation ; Stabilization Of Soil Organic Matter
    ISSN: 1354-1013
    E-ISSN: 1365-2486
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Global Change Biology, November 2011, Vol.17(11), pp.3405-3417
    Description: Lowland rice paddy soils may accumulate significant amounts of organic matter. Our aim was to investigate the role of prolonged paddy management on the nitrogen () status of the soils, and to elucidate the contribution of bacteria and fungi to long‐term accumulation processes. For this purpose, we sampled a chronosequence of 0–2000 years of rice cropping with adjacent non‐paddy systems in the ay of angzhou, hina. The samples were analyzed for bulk density, total, mineral and microbial (), and amino sugars as markers for microbial residues. The results showed that during the first 100 years of land embankment, both paddy and non‐paddy soils accumulated at a rate of up to 61 and 77 kg ha per annum, reaching steady‐state conditions after 110–172 years, respectively. Final stocks in paddy fields exceeded those of the non‐paddies by a factor of 1.3. The contribution of amino sugars to total increased to a maximum of 34 g  kg  in both land‐use systems, highlighting a significant accumulation of in microbial residues of the surface soils. Correspondingly, the ratio of to microbial residue‐ decreased to a constant value. In the paddy subsoils, we found that bacterial residues particularly contributed to the pool of microbial residue‐. Nevertheless, the absolute contents of amino sugars in paddy subsoils decreased during the last 1700 years of the chronosequence. We conclude that under paddy cultivation, soil microorganisms may accumulate parts of this in their residues despite low overall availability. However, this accumulation is limited to initial stages of paddy soil development and restricted to the surface horizons, thus challenging its sustainability with future land‐use changes.
    Keywords: Amino Sugars ; Cultivation Chronosequence ; Microbial Biomass ; Nitrogen Accumulation ; Paddy Soil
    ISSN: 1354-1013
    E-ISSN: 1365-2486
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Soil Biology and Biochemistry, January 2014, Vol.68, pp.241-251
    Description: Prolonged summer droughts are projected to occur as a consequence of climate change in Central Europe. The resulting reduced soil water availability may lead to alterations in rates of soil processes such as nitrogen partitioning among soil organic matter fractions and stabilization within soil. To study the effect of climate change-induced drought on (1) the distribution of nitrogen among soil organic matter fractions and (2) nitrogen stabilization, we performed a space-for-time climate change experiment. We transferred intact plant–soil–microbe mesocosms of a Rendzic Leptosol with a young beech tree from a slope with northwestern exposure in southern Germany characterized by a cool-moist microclimate across a narrow valley to a slope with southwestern exposure with a warm-dry microclimate, which reflects projected future climatic conditions. A control transfer was also done on the northwest-facing slope within the same area of origin. We combined a homogenous N labeling approach using ammonium nitrate with a physical fractionation procedure and chemical soil extraction protocols. Our aim was to follow the partitioning of N in different soil organic matter fractions, i.e. light fractions, organo-mineral fractions, and extractable soil fractions including microbial biomass, ammonium, nitrate, and dissolved organic nitrogen. Within less than one growing season, we observed a modified partitioning of recently applied inorganic N between different soil fractions in relation to drier summer conditions, with attenuated nitrogen turnover under drought and consequently significantly higher N concentrations in the relatively labile light fractions. We ascribed this effect to a decelerated mineralization immobilization turnover. We conclude that prolonged summer droughts may alter the stabilization dynamics because the induced inactivity of microorganisms may reduce the transfer of nitrogen to stabilization pathways. A retarded stabilization in organo-mineral associations enhances the risk of nitrogen losses during extreme rainfall events, which are projected to increase in the 21st century predicted by future climate change scenarios for Central Europe.
    Keywords: Nitrogen Stabilization ; Density Fractionation ; 15n Labeling ; Climate Change ; Fagus Sylvatica L ; Field Experiment ; Light Fraction ; Microbial Biomass ; Mineralization Immobilization Turnover ; Transplant Study ; Agriculture ; Chemistry
    ISSN: 0038-0717
    E-ISSN: 1879-3428
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Global Change Biology, April 2013, Vol.19(4), pp.1107-1113
    Description: More than 50% of the world's population feeds on rice. Soils used for rice production are mostly managed under submerged conditions (paddy soils). This management, which favors carbon sequestration, potentially decouples surface from subsurface carbon cycling. The objective of this study was to elucidate the long‐term rates of carbon accrual in surface and subsurface soil horizons relative to those of soils under nonpaddy management. We assessed changes in total soil organic as well as of inorganic carbon stocks along a 2000‐year chronosequence of soils under paddy and adjacent nonpaddy management in the angtze delta, hina. The initial organic carbon accumulation phase lasts much longer and is more intensive than previously assumed, e.g., by the ntergovernmental anel on limate hange (). Paddy topsoils accumulated 170–178 kg organic carbon ha a in the first 300 years; subsoils lost 29–84 kg organic carbon ha a during this period of time. Subsoil carbon losses were largest during the first 50 years after land embankment and again large beyond 700 years of cultivation, due to inorganic carbonate weathering and the lack of organic carbon replenishment. Carbon losses in subsoils may therefore offset soil carbon gains or losses in the surface soils. We strongly recommend including subsoils into global carbon accounting schemes, particularly for paddy fields.
    Keywords: Carbon Sequestration ; Inorganic Carbon ; Land Use ; Organic Carbon ; Paddy ; Rice Cultivation ; Soils ; Subsoils
    ISSN: 1354-1013
    E-ISSN: 1365-2486
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages