Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Convolutional Neural Networks
Type of Medium
Language
Year
  • 1
    Language: English
    In: IEEE Transactions on Biomedical Engineering, March 2016, Vol.63(3), pp.664-675
    Description: Goal: This paper presents a fast and accurate patient-specific electrocardiogram (ECG) classification and monitoring system. Methods: An adaptive implementation of 1-D convolutional neural networks (CNNs) is inherently used to fuse the two major blocks of the ECG classification into a single learning body: feature extraction and classification. Therefore, for each patient, an individual and simple CNN will be trained by using relatively small common and patient-specific training data, and thus, such patient-specific feature extraction ability can further improve the classification performance. Since this also negates the necessity to extract hand-crafted manual features, once a dedicated CNN is trained for a particular patient, it can solely be used to classify possibly long ECG data stream in a fast and accurate manner or alternatively, such a solution can conveniently be used for real-time ECG monitoring and early alert system on a light-weight wearable device. Results: The results over the MIT-BIH arrhythmia benchmark database demonstrate that the proposed solution achieves a superior classification performance than most of the state-of-the-art methods for the detection of ventricular ectopic beats and supraventricular ectopic beats. Conclusion: Besides the speed and computational efficiency achieved, once a dedicated CNN is trained for an individual patient, it can solely be used to classify his/her long ECG records such as Holter registers in a fast and accurate manner. Significance: Due to its simple and parameter invariant nature, the proposed system is highly generic, and, thus, applicable to any ECG dataset.
    Keywords: Electrocardiography ; Neurons ; Feature Extraction ; Kernel ; Databases ; Training ; Monitoring ; Patient-Specific ECG Classification ; Convolutional Neural Networks ; Real-Time Heart Monitoring ; Medicine ; Engineering
    ISSN: 0018-9294
    E-ISSN: 1558-2531
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Neurocomputing, 31 January 2018, Vol.275, pp.1308-1317
    Description: Structural damage detection has been an interdisciplinary area of interest for various engineering fields. While the available damage detection methods have been in the process of adapting machine learning concepts, most machine learning based methods extract “hand-crafted” features which are fixed and manually selected in advance. Their performance varies significantly among various patterns of data depending on the particular structure under analysis. Convolutional neural networks (CNNs), on the other hand, can fuse and simultaneously optimize two major sets of an assessment task (feature extraction and classification) into a single learning block during the training phase. This ability not only provides an improved classification performance but also yields a superior computational efficiency. 1D CNNs have recently achieved state-of-the-art performance in vibration-based structural damage detection; however, it has been reported that the training of the CNNs requires significant amount of measurements especially in large structures. In order to overcome this limitation, this paper presents an enhanced CNN-based approach that requires only two measurement sets regardless of the size of the structure. This approach is verified using the experimental data of the Phase II benchmark problem of structural health monitoring which had been introduced by IASC-ASCE Structural Health Monitoring Task Group. As a result, it is shown that the enhanced CNN-based approach successfully estimated the actual amount of damage for the nine damage scenarios of the benchmark study.
    Keywords: Structural Damage Detection ; Neural Networks ; Convolutional Neural Networks ; Infrastructure Health ; Structural Health Monitoring ; Neurocomputing ; Structural Damage Identification ; Computer Science
    ISSN: 0925-2312
    E-ISSN: 1872-8286
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Journal of Sound and Vibration, 23 June 2018, Vol.424, pp.158-172
    Description: Being an alternative to conventional wired sensors, wireless sensor networks (WSNs) are extensively used in Structural Health Monitoring (SHM) applications. Most of the Structural Damage Detection (SDD) approaches available in the SHM literature are as they require transferring data from all sensors within the network to a single processing unit to evaluate the structural condition. These methods are found predominantly feasible for wired SHM systems; however, transmission and synchronization of huge data sets in WSNs has been found to be arduous. As such, the application of centralized methods with WSNs has been a challenge for engineers. In this paper, the authors are presenting a novel application of 1D Convolutional Neural Networks (1D CNNs) on WSNs for SDD purposes. The SDD is successfully performed completely wireless and real-time under ambient conditions. As a result of this, a damage detection method suitable for wireless SHM systems is proposed. The proposed method is based on 1D CNNs and it involves training an individual 1D CNN for each wireless sensor in the network in a format where each CNN is assigned to process the locally-available data only, eliminating the need for data transmission and synchronization. The proposed damage detection method operates directly on the raw ambient vibration condition signals without any filtering or preprocessing. Moreover, the proposed approach requires minimal computational time and power since 1D CNNs merge both feature extraction and classification tasks into a single learning block. This ability is prevailingly cost-effective and evidently practical in WSNs considering the hardware systems have been occasionally reported to suffer from limited power supply in these networks. To display the capability and verify the success of the proposed method, large-scale experiments conducted on a laboratory structure equipped with a state-of-the-art WSN are reported.
    Keywords: Structural Damage Detection ; Convolutional Neural Networks ; Infrastructure Health ; Structural Health Monitoring ; Wireless Sensor Networks ; Real-Time Damage Detection ; Physics
    ISSN: 0022-460X
    E-ISSN: 1095-8568
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Journal of Sound and Vibration, 03 February 2017, Vol.388, pp.154-170
    Description: Structural health monitoring (SHM) and vibration-based structural damage detection have been a continuous interest for civil, mechanical and aerospace engineers over the decades. Early and damage detection has always been one of the principal objectives of SHM applications. The performance of a classical damage detection system predominantly depends on the choice of the features and the classifier. While the fixed and hand-crafted features may either be a sub-optimal choice for a particular structure or fail to achieve the same level of performance on another structure, they usually require a large computation power which may hinder their usage for real-time structural damage detection. This paper presents a novel, fast and accurate structural damage detection system using 1D Convolutional Neural Networks (CNNs) that has an inherent adaptive design to fuse both feature extraction and classification blocks into a single and compact learning body. The proposed method performs vibration-based damage detection and localization of the damage in real-time. The advantage of this approach is its ability to extract optimal damage-sensitive features automatically from the raw acceleration signals. Large-scale experiments conducted on a grandstand simulator revealed an outstanding performance and verified the computational efficiency of the proposed real-time damage detection method.
    Keywords: Vibration ; Structural Health Monitoring ; Structural Damage Detection ; Neural Networks ; Convolutional Neural Networks ; Physics
    ISSN: 0022-460X
    E-ISSN: 1095-8568
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Image and Vision Computing, October 2018, Vol.78, pp.73-83
    Description: Managing the water quality of freshwaters is a crucial task worldwide. One of the most used methods to biomonitor water quality is to sample benthic macroinvertebrate communities, in particular to examine the presence and proportion of certain species. This paper presents a benchmark database for automatic visual classification methods to evaluate their ability for distinguishing visually similar categories of aquatic macroinvertebrate taxa. We make publicly available a new database, containing 64 types of freshwater macroinvertebrates, ranging in number of images per category from 7 to 577. The database is divided into three datasets, varying in number of categories (64, 29, and 9 categories). Furthermore, in order to accomplish a baseline evaluation performance, we present the classification results of Convolutional Neural Networks (CNNs) that are widely used for deep learning tasks in large databases. Besides CNNs, we experimented with several other well-known classification methods using deep features extracted from the data.
    Keywords: Biomonitoring ; Fine-Grained Classification ; Benthic Macroinvertebrates ; Deep Learning ; Convolutional Neural Networks ; Engineering ; Applied Sciences
    ISSN: 0262-8856
    E-ISSN: 1872-8138
    Source: ScienceDirect Journals (Elsevier)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Journal of Signal Processing Systems, 2019, Vol.91(2), pp.179-189
    Description: Timely and accurate bearing fault detection and diagnosis is important for reliable and safe operation of industrial systems. In this study, performance of a generic real-time induction bearing fault diagnosis system employing compact adaptive 1D Convolutional Neural Network (CNN) classifier is extensively studied. In the literature, although many studies have developed highly accurate algorithms for detecting bearing faults, their results have generally been limited to relatively small train/test data sets. As opposed to conventional intelligent fault diagnosis systems that usually encapsulate feature extraction, feature selection and classification as distinct blocks, the proposed system takes directly raw time-series sensor data as input and it can efficiently learn optimal features with the proper training. The main advantages of the 1D CNN based approach are 1) its compact architecture configuration (rather than the complex deep architectures) which performs only 1D convolutions making it suitable for real-time fault detection and monitoring, 2) its cost effective and practical real-time hardware implementation, 3) its ability to work without any pre-determined transformation (such as FFT or DWT), hand-crafted feature extraction and feature selection, and 4) its capability to provide efficient training of the classifier with limited size of training data set and limited number of BP iterations. Effectiveness and feasibility of the 1D CNN based fault diagnosis method is validated by applying it to two commonly used benchmark real vibration data sets and comparing the results with the other competing intelligent fault diagnosis methods.
    Keywords: Bearing fault detection ; Intelligent systems ; Convolutional neural networks
    ISSN: 1939-8018
    E-ISSN: 1939-8115
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Remote Sensing, 01 June 2019, Vol.11(11), p.1340
    Description: Accurate land use/land cover classification of synthetic aperture radar (SAR) images plays an important role in environmental, economic, and nature related research areas and applications. When fully polarimetric SAR data is not available, single- or dual-polarization SAR data can also be used whilst posing certain difficulties. For instance, traditional Machine Learning (ML) methods generally focus on finding more discriminative features to overcome the lack of information due to single- or dual-polarimetry. Beside conventional ML approaches, studies proposing deep convolutional neural networks (CNNs) come with limitations and drawbacks such as requirements of massive amounts of data for training and special hardware for implementing complex deep networks. In this study, we propose a systematic approach based on sliding-window classification with compact and adaptive CNNs that can overcome such drawbacks whilst achieving state-of-the-art performance levels for land use/land cover classification. The proposed approach voids the need for feature extraction and selection processes entirely, and perform classification directly over SAR intensity data. Furthermore, unlike deep CNNs, the proposed approach requires neither a dedicated hardware nor a large amount of data with ground-truth labels. The proposed systematic approach is designed to achieve maximum classification accuracy on single and dual-polarized intensity data with minimum human interaction. Moreover, due to its compact configuration, the proposed approach can process such small patches which is not possible with deep learning solutions. This ability significantly improves the details in segmentation masks. An extensive set of experiments over two benchmark SAR datasets confirms the superior classification performance and efficient computational complexity of the proposed approach compared to the competing methods.
    Keywords: Convolutional Neural Networks ; Synthetic Aperture Radar (SAR) ; Land Use/Land Cover Classification ; Sliding Window ; Geography
    E-ISSN: 2072-4292
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages