Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Drug Resistance, Neoplasm  (30)
Type of Medium
Language
Year
  • 1
    Language: English
    In: PLoS ONE, 01 January 2014, Vol.9(9), p.e108758
    Description: Aurora kinase inhibitors displayed activity in pre-clinical neuroblastoma models. Here, we studied the effects of the pan-aurora kinase inhibitor tozasertib (VX680, MK-0457) and the aurora kinase inhibitor alisertib (MLN8237) that shows some specificity for aurora kinase A over aurora kinase B in a panel of neuroblastoma cell lines with acquired drug resistance. Both compounds displayed anti-neuroblastoma activity in the nanomolar range. The anti-neuroblastoma mechanism included inhibition of aurora kinase signalling as indicated by decreased phosphorylation of the aurora kinase substrate histone H3, cell cycle inhibition in G2/M phase, and induction of apoptosis. The activity of alisertib but not of tozasertib was affected by ABCB1 expression. Aurora kinase inhibitors induced a p53 response and their activity was enhanced in combination with the MDM2 inhibitor and p53 activator nutlin-3 in p53 wild-type cells. In conclusion, aurora kinases are potential drug targets in therapy-refractory neuroblastoma, in particular for the vast majority of p53 wild-type cases.
    Keywords: Sciences (General)
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: PLoS ONE, 01 January 2017, Vol.12(7), p.e0181081
    Description: The efficacy of cisplatin-based chemotherapy in cancer is limited by the occurrence of innate and acquired drug resistance. In order to better understand the mechanisms underlying acquired cisplatin resistance, we have compared the adenocarcinoma-derived non-small cell lung cancer (NSCLC) cell line A549 and its cisplatin-resistant sub-line A549rCDDP2000 with regard to cisplatin resistance mechanisms including cellular platinum accumulation, DNA-adduct formation, cell cycle alterations, apoptosis induction and activation of key players of DNA damage response. In A549rCDDP2000 cells, a cisplatin-induced G2/M cell cycle arrest was lacking and apoptosis was reduced compared to A549 cells, although equitoxic cisplatin concentrations resulted in comparable platinum-DNA adduct levels. These differences were accompanied by changes in the expression of proteins involved in DNA damage response. In A549 cells, cisplatin exposure led to a significantly higher expression of genes coding for proteins mediating G2/M arrest and apoptosis (mouse double minute 2 homolog (MDM2), xeroderma pigmentosum complementation group C (XPC), stress inducible protein (SIP) and p21) compared to resistant cells. This was underlined by significantly higher protein levels of phosphorylated Ataxia telangiectasia mutated (pAtm) and p53 in A549 cells compared to their respective untreated control. The results were compiled in a preliminary model of resistance-associated signaling alterations. In conclusion, these findings suggest that acquired resistance of NSCLC cells against cisplatin is the consequence of altered signaling leading to reduced G2/M cell cycle arrest and apoptosis.
    Keywords: Sciences (General)
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: International journal of clinical pharmacology and therapeutics, December 2015, Vol.53(12), pp.1041-5
    Keywords: Antineoplastic Agents -- Pharmacology ; Cisplatin -- Pharmacology ; Mitogen-Activated Protein Kinase 1 -- Physiology ; Mitogen-Activated Protein Kinase 3 -- Physiology
    ISSN: 0946-1965
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Biochemical Society transactions, August 2014, Vol.42(4), pp.752-7
    Description: Various experimental strategies aim to (re)activate p53 signalling in cancer cells. The most advanced clinically are small-molecule inhibitors of the autoregulatory interaction between p53 and MDM2 (murine double minute 2). Different MDM2 inhibitors are currently under investigation in clinical trials. As for other targeted anti-cancer therapy approaches, relatively rapid resistance acquisition may limit the clinical efficacy of MDM2 inhibitors. In particular, MDM2 inhibitors were shown to induce p53 mutations in experimental systems. In the present article, we summarize what is known about MDM2 inhibitors as anti-cancer drugs with a focus on the acquisition of resistance to these compounds.
    Keywords: Antineoplastic Agents -- Therapeutic Use ; Neoplasms -- Drug Therapy ; Proto-Oncogene Proteins C-Mdm2 -- Antagonists & Inhibitors
    ISSN: 03005127
    E-ISSN: 1470-8752
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: BMC research notes, 10 October 2014, Vol.7, pp.710
    Description: Various kinase inhibitors are known to be ATP-binding cassette (ABC) transporter substrates and resistance acquisition to kinase inhibitors has been associated to increased ABC transporter expression. Here, we investigated the role of the ABC transporters ABCB1, ABCC1, and ABCG2 during melanoma cell resistance acquisition to the V600-mutant BRAF inhibitors PLX4032 (vemurafenib) and PLX4720. PLX4032 had previously been shown to interfere with ABCB1 and ABCG2. PLX4720 had been demonstrated to interact with ABCB1 but to a lower extent than PLX4032. PLX4032 and PLX4720 affected ABCC1- and ABCG2-mediated drug transport in a similar fashion. In a panel of 16 V600E BRAF-mutated melanoma cell lines consisting of four parental cell lines and their sub-lines with acquired resistance to PLX4032, PLX4720, vincristine (cytotoxic ABCB1 and ABCC1 substrate), or mitoxantrone (cytotoxic ABCG2 substrate), we detected enhanced ABC transporter expression in 4/4 cytotoxic ABC transporter substrate-resistant, 3/4 PLX4720-resistant, and 1/4 PLX4032-resistant melanoma cell lines. PLX4032 has the potential to induce ABC transporter expression but this potential is lower than that of PLX4720 or cytotoxic ABC transporter substrates. Since ABC transporters confer multi-drug resistance, this is of relevance for the design of next-line therapies.
    Keywords: Drug Resistance, Multiple ; Drug Resistance, Neoplasm ; ATP-Binding Cassette Transporters -- Drug Effects ; Antineoplastic Agents -- Pharmacology ; Indoles -- Pharmacology ; Protein Kinase Inhibitors -- Pharmacology ; Proto-Oncogene Proteins B-Raf -- Antagonists & Inhibitors ; Sulfonamides -- Pharmacology
    E-ISSN: 1756-0500
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: BMC cancer, 07 April 2015, Vol.15, pp.224
    Description: Acquired resistance to standard chemotherapy causes treatment failure in patients with metastatic bladder cancer. Overexpression of pro-survival Bcl-2 family proteins has been associated with a poor chemotherapeutic response, suggesting that Bcl-2-targeted therapy may be a feasible strategy in patients with these tumors. The small-molecule pan-Bcl-2 inhibitor (-)-gossypol (AT-101) is known to induce apoptotic cell death, but can also induce autophagy through release of the pro-autophagic BH3 only protein Beclin-1 from Bcl-2. The potential therapeutic effects of (-)-gossypol in chemoresistant bladder cancer and the role of autophagy in this context are hitherto unknown. Cisplatin (5637(r)CDDP(1000), RT4(r)CDDP(1000)) and gemcitabine (5637(r)GEMCI(20), RT4(r)GEMCI(20)) chemoresistant sub-lines of the chemo-sensitive bladder cancer cell lines 5637 and RT4 were established for the investigation of acquired resistance mechanisms. Cell lines carrying a stable lentiviral knockdown of the core autophagy regulator ATG5 were created from chemosensitive 5637 and chemoresistant 5637(r)GEMCI(20) and 5637(r)CDDP(1000) cell lines. Cell death and autophagy were quantified by FACS analysis of propidium iodide, Annexin and Lysotracker staining, as well as LC3 translocation. Here we demonstrate that (-)-gossypol induces an apoptotic type of cell death in 5637 and RT4 cells which is partially inhibited by the pan-caspase inhibitor z-VAD. Cisplatin- and gemcitabine-resistant bladder cancer cells exhibit enhanced basal and drug-induced autophagosome formation and lysosomal activity which is accompanied by an attenuated apoptotic cell death after treatment with both (-)-gossypol and ABT-737, a Bcl-2 inhibitor which spares Mcl-1, in comparison to parental cells. Knockdown of ATG5 and inhibition of autophagy by 3-MA had no discernible effect on apoptotic cell death induced by (-)-gossypol and ABT-737 in parental 5637 cells, but evoked a significant increase in early apoptosis and overall cell death in BH3 mimetic-treated 5637(r)GEMCI(20) and 5637(r)CDDP(1000) cells. Our findings show for the first time that (-)-gossypol concomitantly triggers apoptosis and a cytoprotective type of autophagy in bladder cancer and support the notion that enhanced autophagy may underlie the chemoresistant phenotype of these tumors. Simultaneous targeting of Bcl-2 proteins and the autophagy pathway may be an efficient new strategy to overcome their "autophagy addiction" and acquired resistance to current therapy.
    Keywords: Gossypol -- Analogs & Derivatives ; Proto-Oncogene Proteins C-Bcl-2 -- Genetics ; Urinary Bladder Neoplasms -- Drug Therapy
    E-ISSN: 1471-2407
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Oncotarget, 10 July 2015, Vol.6(19), pp.17605-20
    Description: The PKCβ inhibitor enzastaurin was tested in parental neuroblastoma and rhabdomyosarcoma cell lines, their vincristine-resistant sub-lines, primary neuroblastoma cells, ABCB1-transduced, ABCG2-transduced, and p53-depleted cells. Enzastaurin IC50s ranged from 3.3 to 9.5 μM in cell lines and primary cells independently of the ABCB1, ABCG2, or p53 status. Enzastaurin 0.3125 μM interfered with ABCB1-mediated drug transport. PKCα and PKCβ may phosphorylate and activate ABCB1 under the control of p53. However, enzastaurin exerted similar effects on ABCB1 in the presence or absence of functional p53. Also, enzastaurin inhibited PKC signalling only in concentrations ≥ 1.25 μM. The investigated cell lines did not express PKCβ. PKCα depletion reduced PKC signalling but did not affect ABCB1 activity. Intracellular levels of the fluorescent ABCB1 substrate rhodamine 123 rapidly decreased after wash-out of extracellular enzastaurin, and enzastaurin induced ABCB1 ATPase activity resembling the ABCB1 substrate verapamil. Computational docking experiments detected a direct interaction of enzastaurin and ABCB1. These data suggest that enzastaurin directly interferes with ABCB1 function. Enzastaurin further inhibited ABCG2-mediated drug transport but by a different mechanism since it reduced ABCG2 ATPase activity. These findings are important for the further development of therapies combining enzastaurin with ABC transporter substrates.
    Keywords: Nsc350625 ; Onc201 ; Tic10 ; Cancer Drug ; Antineoplastic Agents -- Pharmacology ; Drug Resistance, Neoplasm -- Drug Effects ; Indoles -- Pharmacology ; Neuroblastoma -- Metabolism ; Rhabdomyosarcoma -- Metabolism ; Signal Transduction -- Drug Effects
    E-ISSN: 1949-2553
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Oncotarget, 06 September 2016, Vol.7(36), pp.58051-58064
    Description: The CDK inhibitor SNS-032 had previously exerted promising anti-neuroblastoma activity via CDK7 and 9 inhibition. ABCB1 expression was identified as major determinant of SNS-032 resistance. Here, we investigated the role of ABCB1 in acquired SNS-032 resistance. In contrast to ABCB1-expressing UKF-NB-3 sub-lines resistant to other ABCB1 substrates, SNS-032-adapted UKF-NB-3 (UKF-NB-3rSNS- 032300nM) cells remained sensitive to the non-ABCB1 substrate cisplatin and were completely re-sensitized to cytotoxic ABCB1 substrates by ABCB1 inhibition. Moreover, UKF-NB-3rSNS-032300nM cells remained similarly sensitive to CDK7 and 9 inhibition as UKF-NB-3 cells. In contrast, SHEPrSNS-0322000nM, the SNS-032-resistant sub-line of the neuroblastoma cell line SHEP, displayed low level SNS-032 resistance also when ABCB1 was inhibited. This discrepancy may be explained by the higher SNS-032 concentrations that were used to establish SHEPrSNS-0322000nM cells, since SHEP cells intrinsically express ABCB1 and are less sensitive to SNS-032 (IC50 912 nM) than UKF-NB-3 cells (IC50 153 nM). In conclusion, we show that ABCB1 expression represents the primary (sometimes exclusive) resistance mechanism in neuroblastoma cells with acquired resistance to SNS-032. Thus, ABCB1 inhibitors may increase the SNS-032 efficacy in ABCB1-expressing cells and prolong or avoid resistance formation.
    Keywords: Abcb1 ; Cdk Inhibitor ; Cancer ; Multi-Drug Resistance ; Neuroblastoma ; Drug Resistance, Neoplasm ; Antineoplastic Agents -- Pharmacology ; Neuroblastoma -- Drug Therapy ; Oxazoles -- Pharmacology ; Protein Kinase Inhibitors -- Pharmacology ; Thiazoles -- Pharmacology
    E-ISSN: 1949-2553
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Cancer Letters, 10 September 2017, Vol.403, pp.74-85
    Description: Neuroblastoma is a biologically and clinically heterogeneous pediatric malignancy that includes a high-risk subset for which new therapeutic agents are urgently required. As well as amplification, activating point mutations of and are associated with high-risk and relapsing neuroblastoma. As both ALK and RAS signal through the MEK/ERK pathway, we sought to evaluate two previously reported inhibitors of ETS-related transcription factors, which are transcriptional mediators of the Ras-MEK/ERK pathway in other cancers. Here we show that YK-4-279 suppressed growth and triggered apoptosis in nine neuroblastoma cell lines, while BRD32048, another ETV1 inhibitor, was ineffective. These results suggest that YK-4-279 acts independently of ETS-related transcription factors. Further analysis reveals that YK-4-279 induces mitotic arrest in prometaphase, resulting in subsequent cell death. Mechanistically, we show that YK-4-279 inhibits the formation of kinetochore microtubules, with treated cells showing a broad range of abnormalities including multipolar, fragmented and unseparated spindles, together leading to disrupted progression through mitosis. Notably, YK-4-279 does not affect microtubule acetylation, unlike the conventional mitotic poisons paclitaxel and vincristine. Consistent with this, we demonstrate that YK-4-279 overcomes vincristine-induced resistance in two neuroblastoma cell-line models. Furthermore, combinations of YK-4-279 with vincristine, paclitaxel or the Aurora kinase A inhibitor MLN8237/Alisertib show strong synergy, particularly at low doses. Thus, YK-4-279 could potentially be used as a single-agent or in combination therapies for the treatment of high-risk and relapsing neuroblastoma, as well as other cancers.
    Keywords: Neuroblastoma ; Chemotherapy ; Yk-4-279 ; Mitosis ; Drug Resistance/Synergy ; Medicine
    ISSN: 0304-3835
    E-ISSN: 1872-7980
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Oncotarget, 08 March 2016, Vol.7(10), pp.11664-76
    Description: Pirinixic acid derivatives, a new class of drug candidates for a range of diseases, interfere with targets including PPARα, PPARγ, 5-lipoxygenase (5-LO), and microsomal prostaglandin and E2 synthase-1 (mPGES1). Since 5-LO, mPGES1, PPARα, and PPARγ represent potential anti-cancer drug targets, we here investigated the effects of 39 pirinixic acid derivatives on prostate cancer (PC-3) and neuroblastoma (UKF-NB-3) cell viability and, subsequently, the effects of selected compounds on drug-resistant neuroblastoma cells. Few compounds affected cancer cell viability in low micromolar concentrations but there was no correlation between the anti-cancer effects and the effects on 5-LO, mPGES1, PPARα, or PPARγ. Most strikingly, pirinixic acid derivatives interfered with drug transport by the ATP-binding cassette (ABC) transporter ABCB1 in a drug-specific fashion. LP117, the compound that exerted the strongest effect on ABCB1, interfered in the investigated concentrations of up to 2μM with the ABCB1-mediated transport of vincristine, vinorelbine, actinomycin D, paclitaxel, and calcein-AM but not of doxorubicin, rhodamine 123, or JC-1. In silico docking studies identified differences in the interaction profiles of the investigated ABCB1 substrates with the known ABCB1 binding sites that may explain the substrate-specific effects of LP117. Thus, pirinixic acid derivatives may offer potential as drug-specific modulators of ABCB1-mediated drug transport.
    Keywords: Abcb1 ; Cancer ; Drug Resistance ; Pirinixic Acid ; Pirinixic Acid Derivative ; Pyrimidines -- Pharmacology
    E-ISSN: 1949-2553
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages