Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Journal of Hydrology, 27 November 2014, Vol.519, pp.3386-3399
    Description: The travel-time distribution between rivers and groundwater observation points and the mixing of freshly infiltrated river water with groundwater of other origin is of high relevance in riverbank filtration. These characteristics usually are inferred from the analysis of natural-tracer time series, typically relying on a stationary input–output relationship. However, non-stationarity is a significant feature of the riparian zone causing time-varying river-to-groundwater transfer functions. We present a non-stationary extension of nonparametric deconvolution by performing stationary deconvolution with windowed time series, enforcing smoothness of the determined transfer function in time and travel time. The nonparametric approach facilitates the identification of unconventional features in travel-time distributions, such as broad peaks, and the sliding-window approach is an easy way to accommodate the method to dynamic changes of the system under consideration. By this, we obtain time-varying signal-recovery rates and travel-time distributions, from which we derive the mean travel time and the spread of the distribution as function of time. We apply our method to electric-conductivity data collected at River Thur, Switzerland, and adjacent piezometers. The non-stationary approach reproduces the groundwater observations significantly better than the stationary one, both in terms of overall metrics and in matching individual peaks. We compare characteristics of the transient transfer function to base flow which indicates shorter travel times at higher river stages.
    Keywords: Travel-Time Distribution ; Bank Filtration ; Non-Stationarity ; Nonparametric Inference ; Geography
    ISSN: 0022-1694
    E-ISSN: 1879-2707
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Journal of Hydrology, 2011, Vol.402(3), pp.274-289
    Description: ► Using multiple isotopes to study groundwater flow in active rifts. ► Hydrochemical and isotopic evolution from escarpments to Rift floor. ► Mantle CO influences groundwater hydrochemistry. ► Apparent C ages are similar in Rift floor groundwater. ► Groundwater flow paths occur both longitudinal and transversal to rift axis. This study aims to investigate groundwater recharge and flow patterns in tectonically active rift systems, exemplified by a case study in the Main Ethiopian Rift. The chosen approach includes the investigation of hydrochemical parameters and environmental isotopes ( H, δ H, δ O, δ C-DIC, C-DIC, Sr/ Sr). Apparent groundwater ages were determined by radiocarbon dating after correction of C-DIC using a modified δ C-mixing model and further validation using geochemical modelling with NETPATH. Hydrochemical and isotopic data indicate an evolutionary trend existing from the escarpments towards the Rift floor. Groundwater evolves from tritium-containing and hence recently recharged Ca–HCO -type water on the escarpments to tritium-free Na–HCO groundwater dominating deep Rift floor aquifers. Correspondingly, rising pH and values coupled with increasingly enriched δ C signatures point to hydrochemical evolution of DIC and beginning dilution of the carbon isotope signature by other carbon sources, related to a diffuse influx of mantle CO into the groundwater system. Especially thermal groundwater sampled near the most recent fault zones in the Fantale/Beseka region displays clear influence of mantle CO and increased water–rock interaction, indicated by a shift in δ C and Sr/ Sr signatures. The calculation of apparent groundwater ages revealed an age increase of deep groundwater from the escarpments to the Rift floor, complying with hydrochemical evolution. Within the Rift, samples show a relatively uniform distribution of apparent C ages of ∼1800 to ∼2800 years, with the expected down-gradient aging trend lacking, contradicting the predominant intra-rift groundwater flow described in existing transect-based models of groundwater flow. By combining hydrochemical and new isotopic data with knowledge of the structural geology of the Rift, we improve the existing groundwater flow model and propose a new conceptual model by identifying flow paths both transversal and longitudinal to the main Rift axis, the latter being strongly controlled by faulted and tilted blocks on the escarpment steps. The connection between groundwater flow and fault direction make this model applicable to other active rift systems with similar structural settings.
    Keywords: Rift Tectonics ; Hydrochemistry ; Isotope Hydrology ; Groundwater Cycle and Dating ; 87sr/ 86sr ; 14c ; Geography
    ISSN: 0022-1694
    E-ISSN: 1879-2707
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Environmental Earth Sciences, 2013, Vol.69(2), pp.381-393
    Description: In this study near-continuous time series of nitrate, electrical conductivity, and discharge were used to identify the dominating hydrological mechanisms that control nitrate export dynamics in two agricultural catchments. The main goal was to assess relationships between contrasting event based as well as long-term nitrate transport behaviour and catchment hydrology. Data records were obtained from online probes that allow field based high-frequency analyses over long time periods. The catchments of the Ammer River (southwestern Germany) and the Weida River (eastern Germany) are similar with respect to size (~100 km²), morphology, and climate and are dominated by agricultural use. Main differences are the stronger urbanization and the occurrence of karstic rocks in the Ammer catchment. Nitrate concentrations are high in water of both streams and range mostly between 20 and 50 mg l −1 . Nitrate export in the Ammer catchment is dominated by baseflow and a minor second, diluting runoff component generated in urbanized areas. In contrast, nitrate dynamics of the Weida catchment is governed by the interplay of at least three runoff components, while the largest amount of nitrate is mobilized intermittently by a delayed fast component generated in the catchment’s soils during wet conditions. These interpretations, derived with one online probe at the outlet of each catchment, are well in line with the former modeling results. This study shows that high-resolution data obtained by online techniques offers a large potential to improve the conceptualization of dominating flow and transport processes at catchment scales at relatively low costs and effort.
    Keywords: Nitrate export ; Catchment ; Hydrology ; High-frequency monitoring ; Online probe
    ISSN: 1866-6280
    E-ISSN: 1866-6299
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Environmental Earth Sciences, 2013, Vol.69(2), pp.359-372
    Description: First results of a multi-disciplinary hyporheic monitoring study are presented from the newly established Steinlach Test Site in Southern Germany. The site is located in a bend of the River Steinlach (mean discharge of 1.8 m³/s) underlain by an alluvial sandy gravel aquifer connected to the stream. The overall objective is a better understanding of hyporheic exchange processes at the site and their interrelations with microbial community dynamics and biochemical reactions at the stream–groundwater interface. The present paper focuses on the distribution of lateral hyporheic exchange fluxes and their associated travel times at the Steinlach Test Site. Water level dynamics in various piezometers correspond to the different domains of hydraulic conductivity in the shallow aquifer and confirms hyporheic exchange of infiltrated stream water across the test site. Hydrochemical compositions as well as increased damping of continuous time series of electrical conductivity (EC) and temperature at the respective piezometers confirmed the inferred distribution of hyporheic flowpaths. Mean travel times ranging from 0.5 days close to the stream to more than 8 days in the upstream part of the test site could be estimated from deconvolution of EC and δ 18 O–H 2 O data. The travel times agree well with the presumed flowpaths. Mg/Ca ratios as well as model fits to the EC and δ 18 O data indicate the presence of an additional water component in the western part of the test site which most likely consists of hillslope water or groundwater. Based on the mean travel times, the total lateral hyporheic exchange flux at the site was estimated to be of the order of 1–2 L/s.
    Keywords: Hyporheic zone ; Stream–groundwater interaction ; Travel time distribution ; Deconvolution ; Monitoring
    ISSN: 1866-6280
    E-ISSN: 1866-6299
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages