Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Environmental Sciences
Type of Medium
Language
Year
  • 1
    Language: English
    In: Science of the Total Environment, 2010, Vol.408(22), pp.5405-5413
    Description: The implementation of a geodata-based probabilistic pesticide exposure assessment for surface waters in Germany offers the opportunity to base the exposure estimation on more differentiated assumptions including detailed landscape characteristics. Since these characteristics can only be estimated using field surveys, water body width and depth, hydrology, riparian buffer strip width, ground vegetation cover, existence of concentrated flow paths, and riparian vegetation were characterised at 104 water body segments in the vineyard region Palatinate (south-west Germany). Water body segments classified as permanent (n = 43) had median values of water body width and depth of 0.9 m and 0.06 m, respectively, and the determined median width:depth ratio was 15. Thus, the deterministic water body model (width = 1 m; depth = 0.3 m) assumed in regulatory exposure assessment seems unsuitable for small water bodies in the study area. Only 25% of investigated buffer strips had a dense vegetation cover (〉 70%) and allow a laminar sheet flow as required to include them as an effective pesticide runoff reduction landscape characteristic. At 77 buffer strips, bordering field paths and erosion rills leading into the water body were present, concentrating pesticide runoff and consequently decreasing buffer strip efficiency. The vegetation type shrubbery (height 〉 1.5 m) was present at 57 (29%) investigated riparian buffer strips. According to their median optical vegetation density of 75%, shrubberies may provide a spray drift reduction of 72 ± 29%. Implementing detailed knowledge in an overall assessment revealed that exposure via drift might be 2.4 and via runoff up to 1.6 fold higher than assumed by the deterministic approach. Furthermore, considering vegetated buffer strips only by their width leads to an underestimation of exposure by a factor of as much as four. Our data highlight that the deterministic model assumptions neither represent worst-case nor median values and therefore cannot simply be adopted in a probabilistic approach.
    Keywords: Probabilistic Exposure Assessment ; Pesticide ; Exposure ; Riparian Buffer Strips ; Field Survey ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Agriculture, Ecosystems and Environment, 2012, Vol.146(1), pp.81-92
    Description: ► We found fungicides frequently in-stream, also in community-relevant concentrations. ► Median copper concentrations in water and sediment were 5.4 μg l and 32.3 mg kg dw. ► Runoff transport via field paths reduced pesticide reduction capacity of buffers. ► In-stream pesticide spectrum was clearly attributed to entries via erosion rills. ► Vegetated field paths or wetlands are suggested to reduce entries via erosion rills. The present study was performed to characterise in-stream pesticide exposure within the Palatinate vineyard region in south-west Germany, evaluate the influence of buffer strip widths and identify mitigation measures for the relevant entry pathways. In-stream water and sediment samples that were taken at nine sampling sites of different buffer widths following intense rainfall, and edge-of-field runoff that were sampled in erosion rills were analysed regarding 28 active ingredients of pesticides including copper. In-stream samples contained a mix of 8 ± 4 pesticide compounds, resulting in total pesticide concentrations of 1.4–8.9 μg l for water and 16–670 μg kg dw for sediment. Following an exceptional rainfall event with a previous 34-day drought period, pesticide concentrations reached 7.0–83.4 μg l . Fungicides were the most important pesticides found and were significantly correlated with the pesticide application frequency and rate. The calculated toxicity values per sample (TU ) indicated that both organic pesticides and copper concentrations likely cause ecotoxicological effects in the field. The buffer strip width was of little importance for pesticide in-stream concentrations because pesticide entry occurred mainly via the field path network and erosion rills. Pesticide in-stream concentrations were significantly and positively correlated with the concentrations detected in erosion rills ( = 0.56). As possible risk mitigation measures, we suggest the implementation of grassed field paths and vegetated ditches or wetlands.
    Keywords: Fungicide ; Copper ; Buffer Strips ; Surface Water ; Monitoring ; Exposure ; Agriculture ; Environmental Sciences
    ISSN: 0167-8809
    E-ISSN: 1873-2305
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Science of the Total Environment, 15 October 2018, Vol.639, pp.516-525
    Description: The decades-long agricultural use of insecticides resulted in frequent contamination of surface waters globally regularly posing high risks for the aquatic biodiversity. However, the concentration levels of individual insecticide compounds have by now not been compiled and reported using global scale data, hampering our knowledge on the insecticide exposure of aquatic ecosystems. Here, we specify measured insecticide concentrations (MICs, comprising in total 11,300 water and sediment concentrations taken from a previous publication) for 28 important insecticide compounds covering four major insecticide classes. Results show that organochlorine and organophosphate insecticides, which dominated the global insecticide market for decades, have been detected most often and at highest concentration levels in surface waters globally. In comparison, MICs of the more recent pyrethroids and neonicotinoids were less often reported and generally at lower concentrations as a result of their later market introduction and lower application rates. An online insecticide classification calculator (ICC; available at: ) is provided in order to enable the comparison and classification of prospective MICs with available global insecticide concentrations. Spatial analyses of existing data show that most MICs were reported for surface waters in North America, Asia and Europe, whereas highest concentration levels were detected in Africa, Asia and South America. An evaluation of water and sediment MICs showed that theoretical organic carbon-water partition coefficients (K ) determined in the laboratory overestimated K values based on actual field concentrations by up to a factor of more than 20, with highest deviations found for highly sorptive pyrethroids. Overall, the comprehensive compilation of insecticide field concentrations presented here is a valuable tool for the classification of future surface water monitoring results and serves as important input data for more field relevant toxicity testing approaches and pesticide exposure and risk assessment schemes.
    Keywords: Pesticides ; Surface Water Exposure ; Monitoring ; Global Survey ; Koc ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Science of the Total Environment, 01 September 2018, Vol.635, pp.687-698
    Description: The aquatic environment is strongly connected to the surrounding agricultural landscapes, which regularly serve as sources of stressors such as agrochemicals. Genetically modified crops, which are cultivated on a large scale in many countries, may also act as stressors. Despite the commercial use of genetically modified organisms (GMOs) for over 20 years, their impact on the aquatic environment came into focus only 10 years ago. We present the status quo of the available scientific data in order to provide an input for informed aquatic risk assessment of GMOs. We could identify only 39 publications, including 84 studies, dealing with GMOs in the aquatic environment, and our analysis shows substantial knowledge gaps. The available information is restricted to a small number of crop plants, traits, events, and test organisms. The analysis of effect studies reveals that only a narrow range of organisms has been tested and that studies on combinatorial actions of stressors are virtually absent. The analysis of fate studies shows that many aspects, such as the fate of leached toxins, degradation of plant material, and distribution of crop residues in the aquatic habitat, are insufficiently investigated. Together with these research needs, we identify standardization of test methods as an issue of high priority, both for research and risk assessment needed for GMO regulation.
    Keywords: Genetically Modified Crops ; Aquatic Ecosystems ; Environmental Risk Assessment ; Non-Target Effects ; Bt Toxin ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Science of the Total Environment, 15 December 2015, Vol.538, pp.246-261
    Description: Terrestrial inputs into freshwater ecosystems are a classical field of environmental science. Resource fluxes (subsidy) from aquatic to terrestrial systems have been less studied, although they are of high ecological relevance particularly for the receiving ecosystem. These fluxes may, however, be impacted by anthropogenically driven alterations modifying structure and functioning of aquatic ecosystems. In this context, we reviewed the peer-reviewed literature for studies addressing the subsidy of terrestrial by aquatic ecosystems with special emphasis on the role that anthropogenic alterations play in this water–land coupling. Our analysis revealed a continuously increasing interest in the coupling of aquatic to terrestrial ecosystems between 1990 and 2014 (total: 661 studies), while the research domains focusing on abiotic (502 studies) and biotic (159 studies) processes are strongly separated. Approximately 35% (abiotic) and 25% (biotic) of the studies focused on the propagation of anthropogenic alterations from the aquatic to the terrestrial system. Among these studies, hydromorphological and hydrological alterations were predominantly assessed, whereas water pollution and invasive species were less frequently investigated. Less than 5% of these studies considered indirect effects in the terrestrial system e.g. via food web responses, as a result of anthropogenic alterations in aquatic ecosystems. Nonetheless, these very few publications indicate far-reaching consequences in the receiving terrestrial ecosystem. For example, bottom-up mediated responses via soil quality can cascade over plant communities up to the level of herbivorous arthropods, while top-down mediated responses via predatory spiders can cascade down to herbivorous arthropods and even plants. Overall, the current state of knowledge calls for an integrated assessment on how these interactions within terrestrial ecosystems are affected by propagation of aquatic ecosystem alterations. To fill these gaps, we propose a scientific framework, which considers abiotic and biotic aspects based on an interdisciplinary approach.
    Keywords: Aquatic–Terrestrial Subsidies ; Flood Events ; Hot Moments ; Hot Spots ; Biogeochemical Processes ; Environmental Chemicals ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Environmental Pollution, 2012, Vol.167, pp.41-46
    Description: Neonicotinoid insecticides like thiacloprid enter agricultural surface waters, where they may affect predator prey-interactions, which are of central importance for ecosystems as well as the functions these systems provide. The effects of field relevant thiacloprid concentrations on the leaf consumption...
    Keywords: Other Biological Topics ; Annan Biologi
    ISSN: 0269-7491
    E-ISSN: 18736424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Science of the Total Environment, 01 March 2016, Vol.545-546, pp.171-183
    Description: Regulatory risk assessment considers vegetated buffer strips as effective risk mitigation measures for the reduction of runoff-related pesticide exposure of surface waters. However, apart from buffer strip widths, further characteristics such as vegetation density or the presence of erosion rills are generally neglected in the determination of buffer strip mitigation efficacies. This study conducted a field survey of fruit orchards (average slope 3.1–12.2%) of the Lourens River catchment, South Africa, which specifically focused on the characteristics and attributes of buffer strips separating orchard areas from tributary streams. In addition, in-stream and erosion rill water samples were collected during three runoff events and GIS-based modeling was employed to predict losses of pesticides associated with runoff. The results show that erosion rills are common in buffer strips (on average 13 to 24 m wide) of the tributaries (up to 6.5 erosion rills per km flow length) and that erosion rills represent concentrated entry pathways of pesticide runoff into the tributaries during rainfall events. Exposure modeling shows that measured pesticide surface water concentrations correlated significantly (R = 0.626; p 〈 0.001) with runoff losses predicted by the modeling approach in which buffer strip width was set to zero at sites with erosion rills; in contrast, no relationship between predicted runoff losses and in-stream pesticide concentrations were detected in the modeling approach that neglected erosion rills and thus assumed efficient buffer strips. Overall, the results of our study show that erosion rills may substantially reduce buffer strip pesticide retention efficacies during runoff events and suggest that the capability of buffer strips as a risk mitigation tool for runoff is largely overestimated in current regulatory risk assessment procedures conducted for pesticide authorization.
    Keywords: Risk Assessment ; Runoff ; Monitoring ; Exposure Modeling ; Field Survey ; South Africa ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Science of the Total Environment, 01 April 2018, Vol.619-620, pp.391-400
    Description: The effects of sediment contamination on fish are of high significance for the protection of ecosystems, human health and economy. However, standardized sediment bioassays with benthic fish species, that mimic bioavailability of potentially toxic compounds and comply with the requirements of alternative test methods, are still scarce. In order to address this issue, embryos of the benthic European weatherfish ( ) were exposed to freeze-dried sediment (via sediment contact assays (SCA)) and sediment extracts (via acute fish embryo toxicity tests) varying in contamination level. The extracts were gained by accelerated solvent extraction with (i) acetone and (ii) pressurized hot water (PHWE) and subsequently analyzed for polycyclic aromatic hydrocarbons, polychlorinated biphenyls and polychlorinated dibenzodioxins and dibenzofurans. Furthermore, embryos of the predominately used zebrafish ( ) were exposed to extracts from the two most contaminated sediments. Results indicated sufficient robustness of weatherfish embryos towards varying test conditions and sensitivity towards relevant sediment-bound compounds. Furthermore, a compliance of effect concentrations derived from weatherfish embryos exposed to sediment extracts (96 h-LC ) with both measured gradient of sediment contamination and previously published results was observed. In comparison to zebrafish, weatherfish embryos showed higher sensitivity to the bioavailability-mimicking extracts from PHWE but lower sensitivity to extracts gained with acetone. SCAs conducted with weatherfish embryos revealed practical difficulties that prevented an implementation with three of four sediments tested. In summary, an application of weatherfish embryos, using bioassays with sediment extracts from PHWE might increase the ecological relevance of sediment toxicity testing: it allows investigations using benthic and temperate fish species considering both bioavailable contaminants and animal welfare concerns.
    Keywords: Acute Fish Embryo Toxicity Test ; Pressurized Hot Water Extraction ; Sediment Contact Assay ; Environmental Risk Assessment ; Alternative Test Method ; Early Life Stage ; Zebrafish ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Science Of The Total Environment, 2012, Vol.439, pp.158-164
    Description: Lineages that are at least superficially morphologically identical but genetically distinct are usually misclassified as a single nominal species and, hence, belong to a cryptic species complex, as for example observed for Gammarus fossarum. Since genetic...
    Keywords: Other Biological Topics ; Annan Biologi
    ISSN: 0048-9697
    E-ISSN: 18791026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Science of the Total Environment, 01 June 2013, Vol.454-455, pp.401-410
    Description: During recent years, increasing incidences of summer droughts – likely driven by climate change – reduced the dilution potential of low-order streams for secondary treated wastewater also in temperate Europe. Despite the potential risks to ecosystem integrity, there is a paucity of knowledge regarding the effects of different wastewater dilution potentials on ecosystem functions. The present study investigated the implications of secondary treated wastewater released into a third-order stream (Queich, southwest Germany) during a season with low dilution potential (summer; ~ 90% wastewater) as compared to a season with high dilution potential (winter; ~ 35% wastewater) in terms of leaf litter decomposition and macroinvertebrate communities. Adverse effects in macroinvertebrate mediated leaf mass loss (~ 65%), gammarids' feeding rate (~ 80%), leaf associated fungal biomass (〉 40%) and shifts in macroinvertebrate community structure were apparent up to 100 and 300 m (partially 500 m) downstream of the wastewater treatment plant effluent during winter and summer, respectively. In addition, a laboratory feeding trial demonstrated the potential of powdered activated carbon to reduce the ecotoxicity of released wastewater. These results urge the development and evaluation of adequate management strategies, e.g. the application of advanced wastewater treatment technologies, to protect the integrity of freshwater ecosystems, which is required by the European Water Framework Directive — also considering decreasing dilution potential of streams as projected by climate change scenarios.
    Keywords: Ecosystem Functions ; Leaf Decomposition ; In Situ ; Micropollutants ; Gammarus ; Powdered Activated Carbon ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages