Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Escherichia Coli
Type of Medium
Language
Year
  • 1
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 27 March 2012, Vol.109(13), pp.E757-64
    Description: SgrS RNA is a model for the large class of Hfq-associated small RNAs that act to posttranscriptionally regulate bacterial mRNAs. The function of SgrS is well-characterized in nonpathogenic Escherichia coli, where it was originally shown to counteract glucose-phosphate stress by acting as a repressor of the ptsG mRNA, which encodes the major glucose transporter. We have discovered additional SgrS targets in Salmonella Typhimurium, a pathogen related to E. coli that recently acquired one-quarter of all genes by horizontal gene transfer. We show that the conserved short seed region of SgrS that recognizes ptsG was recruited to target the Salmonella-specific sopD mRNA of a secreted virulence protein. The SgrS-sopD interaction is exceptionally selective; we find that sopD2 mRNA, whose gene arose from sopD duplication during Salmonella evolution, is deaf to SgrS because of a nonproductive G-U pair in the potential SgrS-sopD2 RNA duplex vs. G-C in SgrS-sopD. In other words, SgrS discriminates the two virulence factor mRNAs at the level of a single hydrogen bond. Our study suggests that bacterial pathogens use their large suites of conserved Hfq-associated regulators to integrate horizontally acquired genes into existing posttranscriptional networks, just as conserved transcription factors are recruited to tame foreign genes at the DNA level. The results graphically illustrate the importance of the seed regions of bacterial small RNAs to select new targets with high fidelity and suggest that target predictions must consider all or none decisions by individual seed nucleotides.
    Keywords: Phylogeny ; Base Pairing -- Genetics ; Gene Transfer, Horizontal -- Genetics ; RNA, Bacterial -- Genetics ; Salmonella -- Genetics
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 20 March 2012, Vol.109(12), pp.4621-6
    Description: The conserved RNA-binding protein Hfq and its associated small regulatory RNAs (sRNAs) are increasingly recognized as the players of a large network of posttranscriptional control of gene expression in Gram-negative bacteria. The role of Hfq in this network is to facilitate base pairing between sRNAs and their trans-encoded target mRNAs. Although the number of known sRNA-mRNA interactions has grown steadily, cellular factors that influence Hfq, the mediator of these interactions, have remained unknown. We report that RelA, a protein long known as the central regulator of the bacterial-stringent response, acts on Hfq and thereby affects the physiological activity of RyhB sRNA as a regulator of iron homeostasis. RyhB requires RelA in vivo to arrest growth during iron depletion and to down-regulate a subset of its target mRNAs (fdoG, nuoA, and sodA), whereas the sodB and sdhC targets are barely affected by RelA. In vitro studies with recombinant proteins show that RelA enhances multimerization of Hfq monomers and stimulates Hfq binding of RyhB and other sRNAs. Hfq from polysomes extracted from wild-type cells binds RyhB in vitro, whereas Hfq from polysomes of a relA mutant strain shows no binding. We propose that, by increasing the level of the hexameric form of Hfq, RelA enables binding of RNAs whose affinity for Hfq is low. Our results suggest that, under specific conditions and/or environments, Hfq concentrations are limiting for RNA binding, which thereby provides an opportunity for cellular proteins such as RelA to impact sRNA-mediated responses by modulating the activity of Hfq.
    Keywords: Escherichia Coli -- Metabolism ; Escherichia Coli Proteins -- Physiology ; Host Factor 1 Protein -- Physiology ; Ligases -- Physiology ; RNA, Bacterial -- Metabolism ; RNA-Binding Proteins -- Physiology
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 02 August 2011, Vol.108(31), pp.12875-80
    Description: The Escherichia coli σ(E) envelope stress response monitors and repairs the outer membrane, a function central to the life of Gram-negative bacteria. The σ(E) stress response was characterized as a single-tier activation network comprised of ~100 genes, including the MicA and RybB noncoding sRNAs. These highly expressed sRNAs were thought to carry out the specialized function of halting de novo synthesis of several abundant porins when envelope homeostasis was perturbed. Using a systematic target profiling and validation approach we discovered that MicA and RybB are each global mRNA repressors of both distinct and shared targets, and that the two sRNAs constitute a posttranscriptional repression arm whose regulatory scope rivals that of the protein-based σ(E) activation arm. Intriguingly, porin mRNAs constitute only ~1/3 of all targets and new nonporin targets predict roles for MicA and RybB in crosstalk with other regulatory responses. This work also provides an example of evolutionarily unrelated sRNAs that are coinduced and bind the same targets, but at different sites. Our finding that expression of either MicA or RybB sRNA protects the cell from the loss of viability experienced when σ(E) activity is inadequate illustrates the importance of the posttranscriptional repression arm of the response. σ(E) is a paradigm of a single-tier stress response with a clear division of labor in which highly expressed noncoding RNAs (MicA, RybB) endow a transcriptional factor intrinsically restricted to gene activation (σ(E)) with the opposite repressor function.
    Keywords: Escherichia Coli Proteins -- Genetics ; RNA, Small Untranslated -- Genetics ; Regulon -- Genetics ; Sigma Factor -- Genetics
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Nature, 2011, Vol.471(7340), p.602
    Description: CRISPR/Cas systems constitute a widespread class of immunity systems that protect bacteria and archaea against phages and plasmids, and commonly use repeat/spacer-derived short crRNAs to silence foreign nucleic acids in a sequence-specific manner. Although the maturation of crRNAs represents a key event in CRISPR activation, the responsible endoribonucleases (CasE, Cas6, Csy4) are missing in many CRISPR/Cas subtypes. Here, differential RNA sequencing of the human pathogen Streptococcus pyogenes uncovered tracrRNA, a trans-encoded small RNA with 24-nucleotide complementarity to the repeat regions of crRNA precursor transcripts. We show that tracrRNA directs the maturation of crRNAs by the activities of the widely conserved endogenous RNase III and the CRISPR-associated Csn1 protein; all these components are essential to protect S. pyogenes against prophage-derived DNA. Our study reveals a novel pathway of small guide RNA maturation and the first example of a host factor (RNase III) required for bacterial RNA-mediated immunity against invaders. [PUBLICATION ]
    Keywords: Bacterial Proteins–Chemistry ; Bacterial Proteins–Genetics ; Bacterial Proteins–Immunology ; Bacterial Proteins–Metabolism ; Conserved Sequence–Genetics ; DNA, Viral–Metabolism ; DNA, Viral–Genetics ; Escherichia Coli–Genetics ; Models, Biological–Metabolism ; Prophages–Biosynthesis ; RNA Precursors–Genetics ; RNA Precursors–Immunology ; RNA Processing, Post-Transcriptional–Metabolism ; RNA, Bacterial–Genetics ; RNA, Bacterial–Metabolism ; RNA, Bacterial–Genetics ; RNA, Bacterial–Immunology ; RNA, Guide–Metabolism ; Ribonuclease III–Virology ; Streptococcus Pyogenes–Virology ; Streptococcus Pyogenes–Virology ; Streptococcus Pyogenes–Virology ; Streptococcus Pyogenes–Virology ; E Coli ; Bacteria ; Bacteriology ; Plasmids ; Proteins ; Bacterial Proteins ; DNA, Viral ; RNA Precursors ; RNA, Bacterial ; RNA, Guide ; Ribonuclease III;
    ISSN: 0028-0836
    E-ISSN: 14764687
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Molecular Microbiology, April 2012, Vol.84(1), pp.1-5
    Description: The transcription factor CsgD governing the production of curli fimbriae and cellulose is a key player in the complex regulatory circuit that decides whether form biofilms. The gene itself is tightly controlled at the level of transcription by a large array of DNA‐binding proteins, but what happens after transcription is less understood. In this issue of , Jørgensen (2012), Mika (2012) and Thomason (2012) report on small RNAs (McaS, RprA and GcvB) that together with the RNA‐chaperone Hfq regulate the mRNAs of and other biofilm genes, and illustrate the burgeoning concept that the 5′ region of bacterial mRNA serves as a hub for sRNA‐mediated signal integration at the post‐transcriptional level.
    Keywords: Transcription (Genetics) ; Proteins ; Messenger Rna ; Genes ; Cellulose;
    ISSN: 0950-382X
    E-ISSN: 1365-2958
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 27 June 2017, Vol.114(26), pp.6824-6829
    Description: The functions of many bacterial RNA-binding proteins remain obscure because of a lack of knowledge of their cellular ligands. Although well-studied cold-shock protein A (CspA) family members are induced and function at low temperature, others are highly expressed in infection-relevant conditions. Here, we have profiled transcripts bound in vivo by the CspA family members of serovar Typhimurium to link the constitutively expressed CspC and CspE proteins with virulence pathways. Phenotypic assays in vitro demonstrated a crucial role for these proteins in membrane stress, motility, and biofilm formation. Moreover, double deletion of and fully attenuates in systemic mouse infection. In other words, the RNA ligand-centric approach taken here overcomes a problematic molecular redundancy of CspC and CspE that likely explains why these proteins have evaded selection in previous virulence factor screens in animals. Our results highlight RNA-binding proteins as regulators of pathogenicity and potential targets of antimicrobial therapy. They also suggest that globally acting RNA-binding proteins are more common in bacteria than currently appreciated.
    Keywords: RNA-Binding Protein ; Salmonella ; Bacterial Pathogenesis ; Cold-Shock Protein ; Stress Response ; Bacterial Proteins ; Cold Shock Proteins and Peptides ; Heat-Shock Proteins ; RNA-Binding Proteins ; Salmonella Infections ; Salmonella Typhimurium ; Virulence Factors
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: PLoS ONE, 2011, Vol.6(3), p.e17296
    Description: P-bodies are dynamic aggregates of RNA and proteins involved in several post-transcriptional regulation processes. P-bodies have been shown to play important roles in regulating viral infection, whereas their interplay with bacterial pathogens, specifically intracellular bacteria that extensively manipulate host cell pathways, remains unknown. Here, we report that Salmonella infection induces P-body disassembly in a cell type-specific manner, and independently of previously characterized pathways such as inhibition of host cell RNA synthesis or microRNA-mediated gene silencing. We show that the Salmonella -induced P-body disassembly depends on the activation of the SPI-2 encoded type 3 secretion system, and that the secreted effector protein SpvB plays a major role in this process. P-body disruption is also induced by the related pathogen, Shigella flexneri , arguing that this might be a new mechanism by which intracellular bacterial pathogens subvert host cell function.
    Keywords: Research Article ; Biology ; Medicine ; Infectious Diseases ; Microbiology ; Molecular Biology ; Cell Biology
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 10 September 2013, Vol.110(37), pp.E3487-96
    Description: Small RNAs (sRNAs) constitute a large and heterogeneous class of bacterial gene expression regulators. Much like eukaryotic microRNAs, these sRNAs typically target multiple mRNAs through short seed pairing, thereby acting as global posttranscriptional regulators. In some bacteria, evidence for hundreds to possibly more than 1,000 different sRNAs has been obtained by transcriptome sequencing. However, the experimental identification of possible targets and, therefore, their confirmation as functional regulators of gene expression has remained laborious. Here, we present a strategy that integrates phylogenetic information to predict sRNA targets at the genomic scale and reconstructs regulatory networks upon functional enrichment and network analysis (CopraRNA, for Comparative Prediction Algorithm for sRNA Targets). Furthermore, CopraRNA precisely predicts the sRNA domains for target recognition and interaction. When applied to several model sRNAs, CopraRNA revealed additional targets and functions for the sRNAs CyaR, FnrS, RybB, RyhB, SgrS, and Spot42. Moreover, the mRNAs gdhA, lrp, marA, nagZ, ptsI, sdhA, and yobF-cspC were suggested as regulatory hubs targeted by up to seven different sRNAs. The verification of many previously undetected targets by CopraRNA, even for extensively investigated sRNAs, demonstrates its advantages and shows that CopraRNA-based analyses can compete with experimental target prediction approaches. A Web interface allows high-confidence target prediction and efficient classification of bacterial sRNAs.
    Keywords: E. Coli ; RNA–RNA Interaction ; Regulatory RNA ; RNA, Bacterial -- Genetics
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Cell, 11 April 2013, Vol.153(2), pp.426-437
    Description: Glucose homeostasis is strictly controlled in all domains of life. Bacteria that are unable to balance intracellular sugar levels and deal with potentially toxic phosphosugars cease growth and risk being outcompeted. Here, we identify the conserved haloacid dehalogenase (HAD)-like enzyme YigL as the previously hypothesized phosphatase for detoxification of phosphosugars and reveal that its synthesis is activated by an Hfq-dependent small RNA in . We show that the glucose-6-P-responsive small RNA SgrS activates YigL synthesis in a translation-independent fashion by the selective stabilization of a decay intermediate of the dicistronic messenger RNA (mRNA). Intriguingly, the major endoribonuclease RNase E, previously known to function together with small RNAs to degrade mRNA targets, is also essential for this process of mRNA activation. The exploitation of and targeted interference with regular RNA turnover described here may constitute a general route for small RNAs to rapidly activate both coding and noncoding genes. ► The bacterial small RNA SgrS posttranscriptionally activates the synthesis of YigL ► YigL is the previously hypothesized phosphatase that prevents phosphosugar toxicity ► SgrS activates yigL by a translation-independent mRNA-stabilization mechanism ► SgrS stabilizes an intermediate in the yigL mRNA decay pathway YigL, a long-sought bacterial phosphatase, regulates glucose-6-phosphate levels. A small regulatory RNA upregulates YigL synthesis by base pairing with the coding sequence of the preceding gene to interfere with endonucleolytic yigL mRNA decay.
    Keywords: Biology
    ISSN: 0092-8674
    E-ISSN: 1097-4172
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: PLoS ONE, 2015, Vol.10(11)
    Description: Bacillus amyloliquefaciens subsp. plantarum FZB42 is a representative of Gram-positive plant-growth-promoting rhizobacteria (PGPR) that inhabit plant root environments. In order to better understand the molecular mechanisms of bacteria-plant symbiosis, we have systematically analyzed the primary transcriptome of strain FZB42 grown under rhizosphere-mimicking conditions using differential RNA sequencing (dRNA-seq). Our analysis revealed 4,877 transcription start sites for protein-coding genes, identified genes differentially expressed under different growth conditions, and corrected many previously mis-annotated genes. We also identified a large number of riboswitches and cis- encoded antisense RNAs, as well as trans- encoded small noncoding RNAs that may play important roles in the gene regulation of Bacillus . Overall, our analyses provided a landscape of Bacillus primary transcriptome and improved the knowledge of rhizobacteria-host interactions.
    Keywords: Research Article
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages