Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geology
Type of Medium
Language
Year
  • 1
    Language: English
    In: Environmental pollution, 2013, Vol.172, pp.155-162
    Description: Water quality of rivers depends often on the degree of urbanization and the population density in the catchment. This study shows results of a monitoring campaign of total concentration of polycyclic aromatic hydrocarbons (PAHs) and suspended particles in water samples in adjacent catchments in Southern Germany with similar geology and climate but different degrees of urbanization. Defined linear relationships between total concentrations of PAHs in water and the amount of suspended solids were obtained indicating predominance of particle-facilitated transport. The slopes of these regressions correspond to the average contamination of suspended particles (Cₛᵤₛ) and thus comprise a very robust measure of sediment pollution in a river. For the first time, we can show that Cₛᵤₛ is distinct in the different catchments and correlates to the degree of urbanization represented by the number of inhabitants per total flux of suspended particles. ; p. 155-162.
    Keywords: Geology ; Water Quality ; Sediment Contamination ; Monitoring ; Population Density ; Watersheds ; Polycyclic Aromatic Hydrocarbons ; Rivers ; Urbanization ; Climate
    ISSN: 0269-7491
    Source: AGRIS (Food and Agriculture Organization of the United Nations)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: PLoS ONE, 01 January 2018, Vol.13(1), p.e0191314
    Description: Suspended particles in rivers can act as carriers of potentially bioavailable metal species and are thus an emerging area of interest in river system monitoring. The delineation of bulk metals concentrations in river water into dissolved and particulate components is also important for risk assessment. Linear relationships between bulk metal concentrations in water (CW,tot) and total suspended solids (TSS) in water can be used to easily evaluate dissolved (CW, intercept) and particle-bound metal fluxes (CSUS, slope) in streams (CW,tot = CW + CSUS TSS). In this study, we apply this principle to catchments in Iran (Haraz) and Germany (Ammer, Goldersbach, and Steinlach) that show differences in geology, geochemistry, land use and hydrological characteristics. For each catchment, particle-bound and dissolved concentrations for a suite of metals in water were calculated based on linear regressions of total suspended solids and total metal concentrations. Results were replicable across sampling campaigns in different years and seasons (between 2013 and 2016) and could be reproduced in a laboratory sedimentation experiment. CSUS values generally showed little variability in different catchments and agree well with soil background values for some metals (e.g. lead and nickel) while other metals (e.g. copper) indicate anthropogenic influences. CW was elevated in the Haraz (Iran) catchment, indicating higher bioavailability and potential human and ecological health concerns (where higher values of CSUS/CW are considered as a risk indicator).
    Keywords: Sciences (General)
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Environmental Earth Sciences, 2013, Vol.69(2), pp.429-441
    Description: The impact of diffuse pollution, agricultural land use and climate change on the long-term response of subsurface–surface water quality is not well understood, but is a prerequisite for evaluation of water management options. The goal of this study is to model geochemical evolution of water chemistry from the infiltration through soil into the unsaturated zone, transport through bedrocks and granular aquifers to a river in order to identify zones of steep concentration gradients and high dynamics under transient flow conditions. A numerical model was constructed comprising a 2-D 1,500 m × 150 m vertical cross-section of typical sedimentary rock formations, a glacio-fluvial quaternary gravel aquifer in the valley and soil layers. The model coupled saturated/un-saturated flow and reactive transport under steady state and transient conditions. Geochemical interactions, include intra-aqueous kinetic reactions of oxygen with dissolved organic matter, as well as kinetics of carbonate dissolution/precipitation. This model section was chosen to provide insight in to the principal processes and time scales affecting water chemistry along different flow paths. The numerical simulator MIN3P was used, a finite volume program for variably saturated subsurface flow and multi-component reactive transport. The results show that subsurface water residence times range from approximately 2 to 2,000 years. Different zones are to be expected with respect to the development of mineral equilibria; namely, purely atmospherically influenced, as well as open and closed system carbonate dissolution. Short-term responses to daily averaged changes in precipitation, however, are only visible to some extent in the shallower and near-river parts of flow system and solute loads. This can most likely be explained by directional changes in flow paths, indicating that equilibrium geochemical condition predominate at the hillslope scale, i.e. water quality depends on transport pathways rather than on kinetic effects. The extent of reducing conditions is controlled by the presence of organic-rich layers (i.e. peat deposits), the dissolution kinetics of aquifer organic matter and the subsequent mixing with oxygenated water by hydrodynamic dispersion.
    Keywords: Rock water interaction ; Water chemistry evolution ; Hydrogeochemical modelling ; Water residence time ; Catchment hydrology
    ISSN: 1866-6280
    E-ISSN: 1866-6299
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Environmental Earth Sciences, 5/2013, Vol.69(2), pp.313-315
    Keywords: Geology;
    ISSN: 1866-6280
    E-ISSN: 1866-6299
    Source: Springer (via CrossRef)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Environmental Earth Sciences, 2013, Vol.69(2), pp.373-380
    Description: Transport of hydrophobic organic pollutants in rivers is mainly coupled to transport of suspended particles. Turbidity measurements are often used to assess the amount of suspended solids in water. In this study, a monitoring campaign is presented where the total concentration of polycyclic aromatic hydrocarbons (PAHs), the amount of total suspended solids (TSS), and turbidity was measured in water samples from five neighboring catchments in southwest Germany. Linear correlations of turbidity and TSS were obtained which were in close agreement to the literature data. From linear regressions of turbidity versus total PAH concentrations in water, mean concentrations of PAH on suspended particles could be calculated and these varied by catchment. These values furthermore comprise a robust measure of the average sediment quality in a given catchment. Since in the catchments investigated in this study, PAH concentrations on suspended particles were stable over a large turbidity range (1–114 Nephelometric Turbidity Units), turbidity could be used as a proxy for total PAHs and likely other highly hydrophobic organic pollutants in river water if the associated correlations are established. Based on that, online monitoring of turbidity (e.g., by optical backscattering sensors) seems very promising to determine annual pollutant fluxes.
    Keywords: Turbidity ; Total suspended solids ; Hydrophobic pollutants ; Particle-facilitated transport ; Catchment hydrology
    ISSN: 1866-6280
    E-ISSN: 1866-6299
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Applied Geochemistry, 2007, Vol.22(12), pp.2606-2617
    Description: Oxidation of reduced pollutants such as in groundwater often takes place at steep redox gradients where oxygenated water is being mixed into polluted water such as landfill leachate. In order to identify controlling parameters and quantify the influence of environmental factors for degradation, sensitivity analysis was performed by means of scenario specific numerical modelling. Geometrical factors such as aquifer thickness have been shown to be very influential on the capability of natural attenuation of pollutants in groundwater. The scenarios investigated here include biodegradation at redox gradients in groundwater, so called fringe processes, for (i) a partly contaminated aquifer with two reaction fronts, (ii) and a spatially variable aquifer thickness. In addition, (iii) the influence of groundwater recharge and (iv) restricted supply of O to contaminated water by slow dispersion and diffusion across the capillary fringe are investigated. Contaminated aquifer thickness, zones of enhanced mixing due to flow focussing and diffusion/dispersion coefficients in the capillary fringe are identified qualitatively as controlling factors for natural attenuation under complex conditions, whereas predictive functions will require further research.
    Keywords: Geology
    ISSN: 0883-2927
    E-ISSN: 1872-9134
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Environmental Earth Sciences, 2013, Vol.69(2), pp.317-333
    Description: Sustainable water quality management requires a profound understanding of water fluxes (precipitation, run-off, recharge, etc.) and solute turnover such as retention, reaction, transformation, etc. at the catchment or landscape scale. The Water and Earth System Science competence cluster (WESS, http://www.wess.info/ ) aims at a holistic analysis of the water cycle coupled to reactive solute transport, including soil–plant–atmosphere and groundwater–surface water interactions. To facilitate exploring the impact of land-use and climate changes on water cycling and water quality, special emphasis is placed on feedbacks between the atmosphere, the land surface, and the subsurface. A major challenge lies in bridging the scales in monitoring and modeling of surface/subsurface versus atmospheric processes. The field work follows the approach of contrasting catchments, i.e. neighboring watersheds with different land use or similar watersheds with different climate. This paper introduces the featured catchments and explains methodologies of WESS by selected examples.
    Keywords: Water and solute fluxes ; Water quality ; Catchments ; Land-surface atmosphere exchange ; Processes and feedbacks ; Modeling ; Monitoring
    ISSN: 1866-6280
    E-ISSN: 1866-6299
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Environmental Science & Technology, 05/1999, Vol.33(10), pp.1637-1644
    Description: Remediation of groundwater contamination in unconsolidated aquifers by dissolved hydrophobic compounds (HOC) requires detailed information on the sorption parameters present in the sediments. Equilibrium sorption isotherms were measured for phenanthrene for a wide variety of lithocomponents (constituents of sand and gravel sediments) and unweathered rock fragments (limestones and sandstones). The lithocomponents were separated based on macroscopic appearance of different lithologies (e.g. limestones, sandstones, shales, mudstones, and igneous rocks) and characterized in terms of organic carbon content and specific surface area. In addition the organic matter (OM) was characterized using coal petrography methods (white and UV light microscopy). As confirmed by heat-treated samples sorption was solely due to OM. Organic carbon normalized sorption coefficients (K sub(OC)) varied by almost 3 orders of magnitude among the samples investigated. The different origin and maturity of isolated organic matter (organic facies) is believed to be responsible. For example, extremely high K sub(OC) values were found for particulate organic matter such as charcoal and coal particles which were preserved within the sandstone and limestone grains. In a second paper we report data on sorption kinetics of the samples used in this study (1).
    Keywords: Chemical Equilibrium ; Sediment Pollution ; Particulate Organic Matter ; Pollutant Persistence ; Adsorption ; Groundwater Pollution ; Aquifers ; Sediment Pollution ; Sorption ; Limestone ; Organic Matter ; Remediation ; Groundwater Pollution ; Geology ; Aquifers ; Sorption ; Rocks ; Water Pollution Treatment ; Organic Matter ; Remediation ; Groundwater Pollution ; Isotherms ; Phenanthrene ; Hydrophobic Compounds ; Physics and Chemistry ; Characteristics, Behavior and Fate ; Sources and Fate of Pollution ; Freshwater Pollution ; Hydrophobic Compounds ; Phenanthrene;
    ISSN: 0013-936X
    E-ISSN: 1520-5851
    Source: American Chemical Society (via CrossRef)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Sedimentary Geology, 1999, Vol.129(3), pp.311-325
    Description: Quaternary fluvial valley deposits form major groundwater reservoirs for the drinking water supply, which are at the same time favorable urban and industrialized areas where contamination of the aquifers and their sediments occurs frequently. The transport behavior of dissolved hydrophobic organic contaminants (HOC) depends on the sorptive interactions (sorption isotherms, sorption kinetics) with the sediment grains and therefore on the sediment history in terms of source rocks (lithocomponents), petrographic composition, and depositional processes (lithofacies, e.g. grain-size distribution). The geological formations present in the source rock area already determine the variability of lithocomponents and thus the sorption capacities for organic contaminants in the valley (aquifer) sediments since they show distinct differences in organic carbon content (C (sub org) ) and nature of organic matter (both influence the sorption behavior of hydrophobic organic compounds). In general, lithocomponents originating from sedimentary rock have higher C (sub org) contents and thus higher sorption capacities compared to metamorphic and magmatic components, and the quartz and feldspar minerals. The petrographic composition of the samples is grain-size-dependent but very similar within a specific lithofacies. Higher fractions of sedimentary rock fragments occur in the gravel-dominated lithofacies, which therefore have higher sorption capacities. In contrast to this, the sand grain-size fractions (sand facies) are, due to decay and transport processes (sediment maturity), enriched in stable lithocomponents such as quartz minerals which consequently lead to lower sorption capacities for HOC. Attention has to be drawn to the impact of strongly sorbing constituents such as Tertiary coal fragments (local source rock area) present in some of the sand samples.
    Keywords: Petrography ; Fluvial Sediments ; Organic Matter ; Equilibrium Sorption ; Geology
    ISSN: 0037-0738
    E-ISSN: 1879-0968
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages