Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Grasslands
Type of Medium
Language
Year
  • 1
    Language: English
    In: Soil Biology and Biochemistry, 2015, Vol.88, p.430(11)
    Description: To link to full-text access for this article, visit this link: http://dx.doi.org/10.1016/j.soilbio.2015.05.026 Byline: Runa S. Boeddinghaus, Naoise Nunan, Doreen Berner, Sven Marhan, Ellen Kandeler Abstract: In heterogeneous environments such as soil it is imperative to understand the spatial relationships between microbial communities, microbial functioning and microbial habitats in order to predict microbial services in managed grasslands. Grassland land-use intensity has been shown to affect the spatial distribution of soil microorganisms, but so far it is unknown whether this is transferable from one geographic region to another. This study evaluated the spatial distribution of soil microbial biomass and enzyme activities involved in C-, N- and P-cycling, together with physico-chemical soil properties in 18 grassland sites differing in their land-use intensity in two geographic regions: the Hainich National Park in the middle of Germany and the Swabian Alb in south-west Germany. Enzyme activities associated with the C- and N-cycles, namely [beta]-glucosidase, xylosidase and chitinase, organic carbon (C.sub.org), total nitrogen (N.sub.t), extractable organic carbon, and mineral nitrogen (N.sub.min) were higher in the Swabian Alb (Leptosols) than in the Hainich National Park (primarily Stagnosols). There was a negative relationship between bulk density and soil properties such as microbial biomass (C.sub.mic, N.sub.mic), urease, C.sub.org, and N.sub.t. The drivers (local abiotic soil properties, spatial separation) of the enzyme profiles ([beta]-glucosidase, chitinase, xylosidase, phosphatase, and urease) were determined through a spatial analysis of the within site variation of enzyme profiles and abiotic properties, using the Procrustes rotation test. The test revealed that physical and chemical properties showed more spatial pattern than the enzyme profiles. [beta]-glucosidase, chitinase, xylosidase, phosphatase, and urease activities were related to local abiotic soil properties, but showed little spatial correlation. Semivariogram modeling revealed that the ranges of spatial autocorrelation of all measured variables were site specific and not related to region or to land-use intensity. Nevertheless, land-use intensity changed the occurrence of spatial patterns measurable at the plot scale: increasing land-use intensity led to an increase in detectable spatial patterns for abiotic soil properties on Leptosols. The conclusion of this study is that microbial biomass and functions in grassland soils do not follow general spatial distribution patterns, but that the spatial distribution is site-specific and mainly related to the abiotic properties of the soils. Author Affiliation: (a) Institute of Soil Science and Land Evaluation, Soil Biology, University of Hohenheim, Stuttgart, Germany (b) CNRS, Institute of Ecology and Environmental Science, Campus AgroParisTech, 78850 Thiverval-Grignon, France Article History: Received 22 July 2014; Revised 27 May 2015; Accepted 28 May 2015
    Keywords: Soil Microbiology – Chemical Properties ; Soil Microbiology – Analysis ; Soils – Chemical Properties ; Soils – Analysis ; Hydrolases – Chemical Properties ; Hydrolases – Analysis ; Grasslands – Chemical Properties ; Grasslands – Analysis
    ISSN: 0038-0717
    Source: Cengage Learning, Inc.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Soil Biology and Biochemistry, September 2015, Vol.88, pp.430-440
    Description: In heterogeneous environments such as soil it is imperative to understand the spatial relationships between microbial communities, microbial functioning and microbial habitats in order to predict microbial services in managed grasslands. Grassland land-use intensity has been shown to affect the spatial distribution of soil microorganisms, but so far it is unknown whether this is transferable from one geographic region to another. This study evaluated the spatial distribution of soil microbial biomass and enzyme activities involved in C-, N- and P-cycling, together with physico-chemical soil properties in 18 grassland sites differing in their land-use intensity in two geographic regions: the Hainich National Park in the middle of Germany and the Swabian Alb in south-west Germany. Enzyme activities associated with the C- and N-cycles, namely β-glucosidase, xylosidase and chitinase, organic carbon (C ), total nitrogen (N ), extractable organic carbon, and mineral nitrogen (N ) were higher in the Swabian Alb (Leptosols) than in the Hainich National Park (primarily Stagnosols). There was a negative relationship between bulk density and soil properties such as microbial biomass (C , N ), urease, C , and N . The drivers (local abiotic soil properties, spatial separation) of the enzyme profiles (β-glucosidase, chitinase, xylosidase, phosphatase, and urease) were determined through a spatial analysis of the within site variation of enzyme profiles and abiotic properties, using the Procrustes rotation test. The test revealed that physical and chemical properties showed more spatial pattern than the enzyme profiles. β-glucosidase, chitinase, xylosidase, phosphatase, and urease activities were related to local abiotic soil properties, but showed little spatial correlation. Semivariogram modeling revealed that the ranges of spatial autocorrelation of all measured variables were site specific and not related to region or to land-use intensity. Nevertheless, land-use intensity changed the occurrence of spatial patterns measurable at the plot scale: increasing land-use intensity led to an increase in detectable spatial patterns for abiotic soil properties on Leptosols. The conclusion of this study is that microbial biomass and functions in grassland soils do not follow general spatial distribution patterns, but that the spatial distribution is site-specific and mainly related to the abiotic properties of the soils.
    Keywords: Biogeography ; Nutrient Cycles ; Enzyme Activities ; Physico-Chemical Soil Properties ; Agriculture ; Chemistry
    ISSN: 0038-0717
    E-ISSN: 1879-3428
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Journal of Ecology, 1 May 2011, Vol.99(3), pp.828-837
    Description: 1. Declines in availability of plant resources to pollinators are a major cause of pollinator loss. The management of plant communities to enhance floral resources is often proposed as a way to sustain pollinator populations. Nectar, the main energetic resource for pollinators, plays a central role in behaviour and composition of pollinator communities. Abiotic and biotic factors are known to influence nectar traits at both the species and community levels, but the impact of plant community composition itself has never been investigated. 2. Below-ground interactions in plant communities can induce changes in plant development through (i) plant-derived litter amendment of the soil and (ii) competition for soil resources between plants. We tested how plant below-ground interactions affect above-ground nectar traits involved in plant attractiveness to pollinators. 3. A short-term pot experiment was carried out with three temperate grassland species Mimulus guttatus, Lamium amplexicaule, and Medicago sativa, showing distinct litter stoichiometry and competitive abilities for soil resources. Litter amendment (none, mono and tri-specific litter) and plant interaction treatments (monocultures, two- and three-species mixtures) were crossed in a factorial design. 4. Litter amendment to the soil led to an increase in total nectar sugar content in L. amplexicaule plants but not in the two other species. We also found that the presence of M. guttatus, a competitive species, reduced the total nectar sugar content in L. amplexicaule through a concomitant decrease in nectar volume per flower and in floral display size, but not in other species. Species-specific responses of nectar traits to variation in soil nitrogen availability were thus observed, suggesting consequences for plant species and community attractiveness to pollinators. However, we did not find evidence that the legume M. sativa affected nectar traits of any neighbouring plants. 5. Synthesis. Our results demonstrate that litter inputs and competition between plants for soil resources can alter nectar traits linked to plant attractiveness to pollinators. This supports the idea that below-ground plant—plant interactions for soil resources can influence above-ground plant— plant interactions for pollination services. This offers promising perspectives in studying the role of below-ground—above-ground interactions on higher trophic levels.
    Keywords: Biological sciences -- Biology -- Botany ; Biological sciences -- Biology -- Botany ; Applied sciences -- Materials science -- Materials ; Biological sciences -- Agriculture -- Agricultural sciences ; Biological sciences -- Biology -- Botany ; Biological sciences -- Biochemistry -- Biomolecules ; Biological sciences -- Ecology -- Human ecology ; Biological sciences -- Ecology -- Natural resources ; Environmental studies -- Environmental sciences -- Developmental biology ; Biological sciences -- Biology -- Developmental biology
    ISSN: 00220477
    E-ISSN: 13652745
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Soil Biology and Biochemistry, April 2014, Vol.71, pp.21-30
    Description: Temporal dynamics create unique and often ephemeral conditions that can influence soil microbial biogeography at different spatial scales. This study investigated the relation between decimeter to meter spatial variability of soil microbial community structure, plant diversity, and soil properties at six dates from April through November. We also explored the robustness of these interactions over time. An historically unfertilized, unplowed grassland in southwest Germany was selected to characterize how seasonal variability in the composition of plant communities and substrate quality changed the biogeography of soil microorganisms at the plot scale (10 m × 10 m). Microbial community spatial structure was positively correlated with the local environment, i.e. physical and chemical soil properties, in spring and autumn, while the density and diversity of plants had an additional effect in the summer period. Spatial relationships among plant and microbial communities were detected only in the early summer and autumn periods when aboveground biomass increase was most rapid and its influence on soil microbial communities was greatest due to increased demand by plants for nutrients. Individual properties exhibited varying degrees of spatial structure over the season. Differential responses of Gram positive and Gram negative bacterial communities to seasonal shifts in soil nutrients were detected. We concluded that spatial distribution patterns of soil microorganisms change over a season and that chemical soil properties are more important controlling factors than plant density and diversity. Finer spatial resolution, such as the mm to cm scale, as well as taxonomic resolution of microbial groups, could help determine the importance of plant species density, composition, and growth stage in shaping microbial community composition and spatial patterns.
    Keywords: Microbial Community Composition ; Spatial Patterns ; Grassland Soils ; Plfas ; Mantel Statistic ; Variogram ; Agriculture ; Chemistry
    ISSN: 0038-0717
    E-ISSN: 1879-3428
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Microbial ecology, 2015, Vol.70(3), pp.809-818
    Description: Many studies have assessed the responses of soil microbial functional groups to increases in atmospheric CO₂ or N deposition alone and more rarely in combination. However, the effects of elevated CO₂ and N on the (de)coupling between different microbial functional groups (e.g., different groups of nitrifiers) have been barely studied, despite potential consequences for ecosystem functioning. Here, we investigated the short-term combined effects of elevated CO₂ and N supply on the abundances of the four main microbial groups involved in soil nitrification: ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (belonging to the genera Nitrobacter and Nitrospira) in grassland mesocosms. AOB and AOA abundances responded differently to the treatments: N addition increased AOB abundance, but did not alter AOA abundance. Nitrobacter and Nitrospira abundances also showed contrasted responses to the treatments: N addition increased Nitrobacter abundance, but decreased Nitrospira abundance. Our results support the idea of a niche differentiation between AOB and AOA, and between Nitrobacter and Nitrospira. AOB and Nitrobacter were both promoted at high N and C conditions (and low soil water content for Nitrobacter), while AOA and Nitrospira were favored at low N and C conditions (and high soil water content for Nitrospira). In addition, Nitrobacter abundance was positively correlated to AOB abundance and Nitrospira abundance to AOA abundance. Our results suggest that the couplings between ammonia and nitrite oxidizers are influenced by soil N availability. Multiple environmental changes may thus elicit rapid and contrasted responses between and among the soil ammonia and nitrite oxidizers due to their different ecological requirements. ; p. 809-818.
    Keywords: Soil Water Content ; Nitrospira ; Ammonia ; Ecosystems ; Nitrogen-Fixing Bacteria ; Carbon Dioxide ; Nitrogen ; Oxidants ; Soil Water ; Nitrification ; Grasslands ; Nitrobacter ; Nitrites
    ISSN: 0095-3628
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: FEMS Microbiology Letters, 2017, Vol. 364(9)
    Description: Nitrogen (N) addition is known to affect soil microbial communities, but the interactive effects of N addition with other drivers of global change remain unclear. The impacts of multiple global changes on the structure of microbial communities may be mediated by specific microbial groups with different life-history strategies. Here, we investigated the combined effects of elevated CO 2 and N addition on soil microbial communities using PLFA profiling in a short-term grassland mesocosm experiment. We also examined the linkages between the relative abundance of r- and K-strategist microorganisms and resistance of the microbial community structure to experimental treatments. N addition had a significant effect on microbial community structure, likely driven by concurrent increases in plant biomass and in soil labile C and N. In contrast, microbial community structure did not change under elevated CO 2 or show significant CO 2 × N interactions. Resistance of soil microbial community structure decreased with increasing fungal/bacterial ratio, but showed a positive relationship with the Gram-positive/Gram-negative bacterial ratio. Our findings suggest that the Gram-positive/Gram-negative bacteria ratio may be a useful indicator of microbial community resistance and that K-strategist abundance may play a role in the short-term stability of microbial communities under global change. Elevated CO 2 alone or in combination with N addition does not affect soil microbial community structure in grassland mesocosms.
    Keywords: Global Change ; Grassland ; Fungal/Bacterial Ratio ; Plfa
    E-ISSN: 1574-6968
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Microbial Ecology, 2015, Vol.70(3), pp.809-818
    Description: Many studies have assessed the responses of soil microbial functional groups to increases in atmospheric CO 2 or N deposition alone and more rarely in combination. However, the effects of elevated CO 2 and N on the (de)coupling between different microbial functional groups (e.g., different groups of nitrifiers) have been barely studied, despite potential consequences for ecosystem functioning. Here, we investigated the short-term combined effects of elevated CO 2 and N supply on the abundances of the four main microbial groups involved in soil nitrification: ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (belonging to the genera Nitrobacter and Nitrospira ) in grassland mesocosms. AOB and AOA abundances responded differently to the treatments: N addition increased AOB abundance, but did not alter AOA abundance. Nitrobacter and Nitrospira abundances also showed contrasted responses to the treatments: N addition increased Nitrobacter abundance, but decreased Nitrospira abundance. Our results support the idea of a niche differentiation between AOB and AOA, and between Nitrobacter and Nitrospira . AOB and Nitrobacter were both promoted at high N and C conditions (and low soil water content for Nitrobacter ), while AOA and Nitrospira were favored at low N and C conditions (and high soil water content for Nitrospira ). In addition, Nitrobacter abundance was positively correlated to AOB abundance and Nitrospira abundance to AOA abundance. Our results suggest that the couplings between ammonia and nitrite oxidizers are influenced by soil N availability. Multiple environmental changes may thus elicit rapid and contrasted responses between and among the soil ammonia and nitrite oxidizers due to their different ecological requirements.
    Keywords: Global change ; Grasslands ; Nitrification ; Ammonia oxidizers ; Nitrite oxidizers ; Niche differentiation
    ISSN: 0095-3628
    E-ISSN: 1432-184X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Applied and Environmental Microbiology, 2005, Vol. 71(11), p.6784
    ISSN: 0099-2240
    ISSN: 00992240
    Source: American Society of Microbiology
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: FEMS Microbiology Ecology, 2009, Vol. 70(1), pp.109-117
    Description: In grazed pastures, soil pH is raised in urine patches, causing dissolution of organic carbon and increased ammonium and nitrate concentrations, with potential effects on the structure and functioning of soil microbial communities. Here we examined the effects of synthetic sheep urine (SU) in a field study on dominant soil bacterial and fungal communities associated with bulk soil and plant roots (rhizoplane), using culture independent methods and a new approach to investigate the ureolytic community. A differential response of bacteria and fungal communities to SU treatment was observed. The bacterial community showed a clear shift in composition after SU treatment, which was more pronounced in bulk soil than on the rhizoplane. The fungal community did not respond to SU treatment; instead, it was more affected by the time of sampling. Redundancy analysis of data indicated that the variation in the bacterial community was related to change in soil pH, while fungal community was more responsive to dissolution of organic carbon. Like the universal bacterial community, the ureolytic community was influenced by the SU treatment. However, different taxa within the ureolytic bacterial community responded differentially to the treatment. The ureolytic community comprised of members from a range of phylogenetically different taxa and could be used to measure the effect of environmental perturbations on the functional diversity of natural ecosystems.
    Keywords: Bacterial Community ; Fungal Community ; Ureolytic Genes ; Microbial Response
    ISSN: 01686496
    E-ISSN: 1574-6941
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: FEMS Microbiology Ecology, 2005, Vol.52(1), pp.139-144
    Description: The density and spatial location of bacteria were investigated within different horizons of an upland grassland soil before and after a liming treatment to increase the numbers of large soil fauna. Bacterial cells were located by image analysis of stained thin sections and densities calculated from these data. Excrement from macro- and meso-fauna was identified using micromorphology and the densities of bacteria on specific areas of excrement measured by image analysis. There were significant differences among horizons in the density of bacterial cells, with the minimum density found in the horizon with least evidence of earthworm activity, but no difference in density between the organic H and organo-mineral Ah horizons. Soil improvement by liming significantly increased bacterial densities in all three horizons, with the greatest increase found in the horizon with the smallest density before liming. There were no differences in bacterial density between areas dominated by excrement from earthworms and excrement from enchytraeids, although densities in both areas were significantly increased by liming. Variability in bacterial density at spatial scales of less than 1 mm was linked to the occurrence of excrement. Bacterial densities within areas of both types of excrement were significantly greater than those in the surrounding soil. However, the frequency distribution of the ratios of density in excrement to that in the soil was bimodal, with a majority of occurrences having a ratio near 1 and only some 20–30% having a much larger ratio. These variations can probably be explained by variations in the age of the excrement and its suitability as a substrate.
    Keywords: Soil Micromorphology ; Soil Structure ; Biological Thin Sections ; Bacteria ; Faunal Excrement ; Temperate Grassland ; Environmental Sciences ; Biology
    ISSN: 0168-6496
    E-ISSN: 1574-6941
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages