Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Humans
Type of Medium
Language
Year
  • 1
    Language: English
    In: Journal of bacteriology, November 2012, Vol.194(21), pp.5864-74
    Description: Hfq is an RNA-binding protein known to regulate a variety of cellular processes by interacting with small RNAs (sRNAs) and mRNAs in prokaryotes. Stenotrophomonas maltophilia is an important opportunistic pathogen affecting primarily hospitalized and immunocompromised hosts. We constructed an hfq deletion mutant (Δhfq) of S. maltophilia and compared the behaviors of wild-type and Δhfq S. maltophilia cells in a variety of assays. This revealed that S. maltophilia Hfq plays a role in biofilm formation and cell motility, as well as susceptibility to antimicrobial agents. Moreover, Hfq is crucial for adhesion to bronchial epithelial cells and is required for the replication of S. maltophilia in macrophages. Differential RNA sequencing analysis (dRNA-seq) of RNA isolated from S. maltophilia wild-type and Δhfq strains showed that Hfq regulates the expression of genes encoding flagellar and fimbrial components, transmembrane proteins, and enzymes involved in different metabolic pathways. Moreover, we analyzed the expression of several sRNAs identified by dRNA-seq in wild-type and Δhfq S. maltophilia cells grown in different conditions on Northern blots. The accumulation of two sRNAs was strongly reduced in the absence of Hfq. Furthermore, based on our dRNA-seq analysis we provide a genome-wide map of transcriptional start sites in S. maltophilia.
    Keywords: Host Factor 1 Protein -- Metabolism ; Molecular Chaperones -- Metabolism ; RNA, Bacterial -- Metabolism ; Stenotrophomonas Maltophilia -- Physiology
    ISSN: 00219193
    E-ISSN: 1098-5530
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature, 2010, Vol.464(7286), p.250
    Description: Genome sequencing of Helicobacter pylori has revealed the potential proteins and genetic diversity of this prevalent human pathogen, yet little is known about its transcriptional organization and noncoding RNA output. Massively parallel cDNA sequencing (RNA-seq) has been revolutionizing global transcriptomic analysis. Here, using a novel differential approach (dRNA-seq) selective for the 5' end of primary transcripts, we present a genome-wide map of H. pylori transcriptional start sites and operons. We discovered hundreds of transcriptional start sites within operons, and opposite to annotated genes, indicating that complexity of gene expression from the small H. pylori genome is increased by uncoupling of polycistrons and by genome-wide antisense transcription. We also discovered an unexpected number of approximately 60 small RNAs including the epsilon-subdivision counterpart of the regulatory 6S RNA and associated RNA products, and potential regulators of cis- and trans-encoded target messenger RNAs. Our approach establishes a paradigm for mapping and annotating the primary transcriptomes of many living species.
    Keywords: Gene Expression Profiling ; Genome, Bacterial -- Genetics ; Helicobacter Infections -- Microbiology ; Helicobacter Pylori -- Genetics ; RNA, Bacterial -- Genetics;
    ISSN: 0028-0836
    E-ISSN: 14764687
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Nucleic acids research, January 2010, Vol.38(3), pp.868-77
    Description: Chlamydia trachomatis is an obligate intracellular pathogenic bacterium that has been refractory to genetic manipulations. Although the genomes of several strains have been sequenced, very little information is available on the gene structure of these bacteria. We used deep sequencing to define the transcriptome of purified elementary bodies (EB) and reticulate bodies (RB) of C. trachomatis L2b, respectively. Using an RNA-seq approach, we have mapped 363 transcriptional start sites (TSS) of annotated genes. Semi-quantitative analysis of mapped cDNA reads revealed differences in the RNA levels of 84 genes isolated from EB and RB, respectively. We have identified and in part confirmed 42 genome- and 1 plasmid-derived novel non-coding RNAs. The genome encoded non-coding RNA, ctrR0332 was one of the most abundantly and differentially expressed RNA in EB and RB, implying an important role in the developmental cycle of C. trachomatis. The detailed map of TSS in a thus far unprecedented resolution as a complement to the genome sequence will help to understand the organization, control and function of genes of this important pathogen.
    Keywords: Chlamydia Trachomatis -- Genetics ; RNA, Bacterial -- Genetics ; RNA, Untranslated -- Genetics
    ISSN: 03051048
    E-ISSN: 1362-4962
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Frontiers in cellular and infection microbiology, 2012, Vol.2, pp.14
    Description: The Gram-negative Epsilonproteobacterium Helicobacter pylori is considered as one of the major human pathogens and many studies have focused on its virulence mechanisms as well as genomic diversity. In contrast, only very little is known about post-transcriptional regulation and small regulatory RNAs (sRNAs) in this spiral-shaped microaerophilic bacterium. Considering the absence of the common RNA chaperone Hfq, which is a key-player in post-transcriptional regulation in enterobacteria, H. pylori was even regarded as an organism without riboregulation. However, analysis of the H. pylori primary transcriptome using RNA-seq revealed a very complex transcriptional output from its small genome. Furthermore, the identification of a wealth of sRNAs as well as massive antisense transcription indicates that H. pylori uses riboregulation for its gene expression control. The ongoing functional characterization of sRNAs along with the identification of associated RNA binding proteins will help to understand their potential roles in Helicobacter virulence and stress response. Moreover, research on riboregulation in H. pylori will provide new insights into its virulence mechanisms and will also help to shed light on post-transcriptional regulation in other Epsilonproteobacteria, including widespread and emerging pathogens such as Campylobacter.
    Keywords: Helicobacter Pylori ; RNA-Seq ; Post-Transcriptional Regulation ; Srna ; Transcriptome Analysis ; Gene Expression Regulation, Bacterial ; RNA Interference ; Transcriptome ; Helicobacter Pylori -- Genetics ; RNA, Bacterial -- Metabolism
    E-ISSN: 2235-2988
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: 2013, Vol.9(5), p.e1003495
    Description: Campylobacter jejuni is currently the leading cause of bacterial gastroenteritis in humans. Comparison of multiple Campylobacter strains revealed a high genetic and phenotypic diversity. However, little is known about differences in transcriptome organization, gene expression, and small RNA (sRNA) repertoires. Here we present the first comparative primary transcriptome analysis based on the differential RNA–seq (dRNA–seq) of four C. jejuni isolates. Our approach includes a novel, generic method for the automated annotation of transcriptional start sites (TSS), which allowed us to provide genome-wide promoter maps in the analyzed strains. These global TSS maps are refined through the integration of a SuperGenome approach that allows for a comparative TSS annotation by mapping RNA–seq data of multiple strains into a common coordinate system derived from a whole-genome alignment. Considering the steadily increasing amount of RNA–seq studies, our automated TSS annotation will not only facilitate transcriptome annotation for a wider range of pro- and eukaryotes but can also be adapted for the analysis among different growth or stress conditions. Our comparative dRNA–seq analysis revealed conservation of most TSS, but also single-nucleotide-polymorphisms (SNP) in promoter regions, which lead to strain-specific transcriptional output. Furthermore, we identified strain-specific sRNA repertoires that could contribute to differential gene regulation among strains. In addition, we identified a novel minimal CRISPR-system in Campylobacter of the type-II CRISPR subtype, which relies on the host factor RNase III and a trans-encoded sRNA for maturation of crRNAs. This minimal system of Campylobacter , which seems active in only some strains, employs a unique maturation pathway, since the crRNAs are transcribed from individual promoters in the upstream repeats and thereby minimize the requirements for the maturation machinery. Overall, our study provides new insights into strain-specific transcriptome organization and sRNAs, and reveals genes that could modulate phenotypic variation among strains despite high conservation at the DNA level. ; Many species have evolved into diverse strains with phenotypic and genotypic variations that facilitate adaptation to different ecological niches and, in the case of pathogens, to different hosts. Whereas comparison of genome sequences reveals differences and similarities among strains, the consequences of genomic variations can be tracked by studying the functional output from the genome. RNA sequencing has been revolutionizing transcriptome analyses of both pro- and eukaryotes. However, the bioinformatics-based analysis is still lagging behind, and transcriptome features are often manually annotated, which is laborious and time-consuming. This is even more compounded for the analyses of multiple strains. Here we compared the primary transcriptomes of four isolates of , the leading cause of bacterial gastroenteritis in humans, and provide genome-wide transcriptional start site (TSS) maps using a novel automated annotation method. Our comparative RNA–seq showed that most TSS are conserved in multiple strains, but we also observed SNP–dependent promoter usage. Furthermore, we identified a novel minimal RNA–based CRISPR immune system as well as strain-specific small RNA repertoires. Our automated, comparative TSS annotation will facilitate and improve transcriptome annotation for a wider range of organisms and provides insights into the contribution of transcriptome differences to phenotypic variation among closely related species.
    Keywords: Research Article ; Biology
    ISSN: 1553-7390
    E-ISSN: 1553-7404
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Methods, 15 September 2015, Vol.86, pp.89-101
    Description: The global mapping of transcription boundaries is a key step in the elucidation of the full complement of transcriptional features of an organism. It facilitates the annotation of operons and untranslated regions as well as novel transcripts, including - and -encoded small RNAs (sRNAs). So called RNA sequencing (RNA-seq) based on deep sequencing of cDNAs has greatly facilitated transcript mapping with single nucleotide resolution. However, conventional RNA-seq approaches typically cannot distinguish between primary and processed transcripts. Here we describe the recently developed differential RNA-seq (dRNA-seq) approach, which facilitates the annotation of transcriptional start sites (TSS) based on deep sequencing of two differentially treated cDNA library pairs, with one library being enriched for primary transcripts. Using the human pathogen as a model organism, we describe the application of dRNA-seq together with an automated TSS annotation approach for generation of a genome-wide TSS map in bacteria. Besides a description of transcriptome and regulatory features that can be identified by this approach, we discuss the impact of different library preparation protocols and sequencing platforms as well as manual and automated TSS annotation. Moreover, we have set up an easily accessible online browser for visualization of the transcriptome data from this and our previous dRNA-seq study.
    Keywords: Differential RNA-Seq ; Transcriptional Start Sites ; Comparative Transcriptomics ; Small Rnas ; Promoter Motifs ; Gene Regulation ; 5′Utr ; Chemistry ; Anatomy & Physiology
    ISSN: 1046-2023
    E-ISSN: 1095-9130
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Nature Communications, 2016, Vol.7
    Description: The widespread CsrA/RsmA protein regulators repress translation by binding GGA motifs in bacterial mRNAs. CsrA activity is primarily controlled through sequestration by multiple small regulatory RNAs. Here we investigate CsrA activity control in the absence of antagonizing small RNAs by examining the CsrA regulon in the human pathogen Campylobacter jejuni. We use genome-wide co-immunoprecipitation combined with RNA sequencing to show that CsrA primarily binds flagellar mRNAs and identify the major flagellin mRNA ( flaA ) as the main CsrA target. The flaA mRNA is translationally repressed by CsrA, but it can also titrate CsrA activity. Together with the main C. jejuni CsrA antagonist, the FliW protein, flaA mRNA controls CsrA-mediated post-transcriptional regulation of other flagellar genes. RNA-FISH reveals that flaA mRNA is expressed and localized at the poles of elongating cells. Polar flaA mRNA localization is translation dependent and is post-transcriptionally regulated by the CsrA-FliW network. Overall, our results suggest a role for CsrA-FliW in spatiotemporal control of flagella assembly and localization of a dual-function mRNA. The CsrA protein binds to and represses translation of certain bacterial mRNAs. Here, Dugar et al . show for the human pathogen Campylobacter jejuni that the major flagellin mRNA acts as both a target and a regulatory 'sponge' for CsrA, and is localized at the cell poles in a translation-dependent manner.
    Keywords: Article;
    ISSN: 2041-1723
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Genome biology, 11 October 2011, Vol.12(10), pp.R98
    Description: Gene function analysis of the obligate intracellular bacterium Chlamydia pneumoniae is hampered by the facts that this organism is inaccessible to genetic manipulations and not cultivable outside the host. The genomes of several strains have been sequenced; however, very little information is available on the gene structure and transcriptome of C. pneumoniae. Using a differential RNA-sequencing approach with specific enrichment of primary transcripts, we defined the transcriptome of purified elementary bodies and reticulate bodies of C. pneumoniae strain CWL-029; 565 transcriptional start sites of annotated genes and novel transcripts were mapped. Analysis of adjacent genes for co-transcription revealed 246 polycistronic transcripts. In total, a distinct transcription start site or an affiliation to an operon could be assigned to 862 out of 1,074 annotated protein coding genes. Semi-quantitative analysis of mapped cDNA reads revealed significant differences for 288 genes in the RNA levels of genes isolated from elementary bodies and reticulate bodies. We have identified and in part confirmed 75 novel putative non-coding RNAs. The detailed map of transcription start sites at single nucleotide resolution allowed for the first time a comprehensive and saturating analysis of promoter consensus sequences in Chlamydia. The precise transcriptional landscape as a complement to the genome sequence will provide new insights into the organization, control and function of genes. Novel non-coding RNAs and identified common promoter motifs will help to understand gene regulation of this important human pathogen.
    Keywords: Genome, Bacterial ; Transcriptome ; Chlamydophila Pneumoniae -- Genetics ; Gene Expression Profiling -- Methods ; RNA, Bacterial -- Genetics
    ISSN: 14656906
    E-ISSN: 1474-760X
    E-ISSN: 14656914
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Nucleic acids research, October 2013, Vol.41(18), pp.8615-27
    Description: Although the DNA methyltransferase 2 family is highly conserved during evolution and recent reports suggested a dual specificity with stronger activity on transfer RNA (tRNA) than DNA substrates, the biological function is still obscure. We show that the Dictyostelium discoideum Dnmt2-homologue DnmA is an active tRNA methyltransferase that modifies C38 in tRNA(Asp(GUC)) in vitro and in vivo. By an ultraviolet-crosslinking and immunoprecipitation approach, we identified further DnmA targets. This revealed specific tRNA fragments bound by the enzyme and identified tRNA(Glu(CUC/UUC)) and tRNA(Gly(GCC)) as new but weaker substrates for both human Dnmt2 and DnmA in vitro but apparently not in vivo. Dnmt2 enzymes form transient covalent complexes with their substrates. The dynamics of complex formation and complex resolution reflect methylation efficiency in vitro. Quantitative PCR analyses revealed alterations in dnmA expression during development, cell cycle and in response to temperature stress. However, dnmA expression only partially correlated with tRNA methylation in vivo. Strikingly, dnmA expression in the laboratory strain AX2 was significantly lower than in the NC4 parent strain. As expression levels and binding of DnmA to a target in vivo are apparently not necessarily accompanied by methylation, we propose an additional biological function of DnmA apart from methylation.
    Keywords: Dictyostelium -- Enzymology ; Protozoan Proteins -- Metabolism ; Trna Methyltransferases -- Metabolism
    ISSN: 03051048
    E-ISSN: 1362-4962
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: The American Journal of Clinical Nutrition, 2018, Vol. 107(3), pp.484-494
    Description: Scientific progress depends on the quality and credibility of research methods. As discourse on rigor, transparency, and reproducibility joins the cacophony of nutrition information and misinformation in mass media, buttressing the real and perceived reliability of nutrition science is more important than ever. This broad topic was the focus of a 2016 plenary session, “Scientific Rigor and Competing Interests in the Nutrition Research Landscape.” This article summarizes and expands on this session in an effort to increase understanding and dialogue with regard to factors that limit the real and perceived reliability of nutrition science and steps that can be taken to mitigate those factors. The end goal is to both earn and merit greater trust in nutrition science by both the scientific community and the general public. The authors offer suggestions in each of the domains of education and training, communications, research conduct, and procedures and policies to help achieve this goal. The authors emphasize the need for adequate funding to support these efforts toward greater rigor and transparency, which will be resource demanding and may require either increased research funding or the recognition that a greater proportion of research funding may need to be allocated to these tasks.
    Keywords: Research Methods ; Scientific Rigor ; Nutrition ; Conflict Of Interests ; Transparency, Trust
    ISSN: 0002-9165
    E-ISSN: 1938-3207
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages