Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Humans
Type of Medium
Language
Year
  • 1
    Language: English
    In: Journal of medicinal chemistry, 25 February 2016, Vol.59(4), pp.1545-55
    Description: Histone deacetylase 6 (HDAC6) catalyzes the removal of an acetyl group from lysine residues of several non-histone proteins. Here we report the preparation of thiazole-, oxazole-, and oxadiazole-containing biarylhydroxamic acids by a short synthetic procedure. We identified them as selective HDAC6 inhibitors by investigating the inhibition of recombinant HDAC enzymes and the protein acetylation in cells by Western blotting (tubulin vs histone acetylation). The most active compounds exhibited nanomolar potency and high selectivity for HDAC6. For example, an oxazole hydroxamate inhibits HDAC6 with an IC50 of 59 nM and has a selectivity index of 〉200 against HDAC1 and HDAC8. This is the first report showing that the nature of a heterocycle directly connected to a zinc binding group (ZBG) can be used to modulate subtype selectivity and potency for HDAC6 inhibitors to such an extent. We rationalize the high potency and selectivity of the oxazoles by molecular modeling and docking.
    Keywords: Histone Deacetylase Inhibitors -- Chemistry ; Histone Deacetylases -- Metabolism ; Hydroxamic Acids -- Chemistry ; Oxazoles -- Chemistry
    ISSN: 00222623
    E-ISSN: 1520-4804
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: International Journal of Cancer, 01 February 2014, Vol.134(3), pp.703-716
    Description: Based on extensive pre‐clinical studies, the oncolytic parvovirus H‐1 (H‐1PV) is currently applied to patients with recurrent glioblastoma in a phase I/IIa clinical trial (ParvOryx01, NCT01301430). Cure rates of about 40% in pediatric high‐risk medulloblastoma (MB) patients also indicate the need of new therapeutic approaches. In order to prepare a future application of oncolytic parvovirotherapy to MB, the present study preclinically evaluates the cytotoxic efficacy of H‐1PV on MB cells and characterizes cellular target genes involved in this effect. Six MB cell lines were analyzed by whole genome oligonucleotide microarrays after treatment and the results were matched to known molecular and cytogenetic risk factors. In contrast to non‐transformed infant astrocytes and neurons, in five out of six MB cell lines lytic H‐1PV infection and efficient viral replication could be demonstrated. The cytotoxic effects induced by H‐1PV were observed at LD50s below 0.05 p. f. u. per cell indicating high susceptibility. Gene expression patterns in the responsive MB cell lines allowed the identification of candidate target genes mediating the cytotoxic effects of H‐1PV. H‐1PV induced down‐regulation of key regulators of early neurogenesis shown to confer poor prognosis in MB such as ZIC1, FOXG1B, MYC, and NFIA. In MB cell lines with genomic amplification of MYC, expression of MYC was the single gene most significantly repressed after H‐1PV infection. H‐1PV virotherapy may be a promising treatment approach for MB since it targets genes of functional relevance and induces cell death at very low titers of input virus. What's new? Medulloblastoma, the most frequent pediatric brain cancer, causes death in about 60 percent of high‐risk patients, and so there is a major need for novel, highly effective therapies. One therapy of interest is parvovirus H‐1 (H‐1PV), which was found in this study to produce marked cytotoxic effects in six medulloblastoma cell lines. Gene expression profiling revealed that H‐1PV infection causes down‐regulation of key regulatory genes involved in early neurogenesis, with significant repression of . The master regulators affected may represent putative direct or indirect H‐1PV target genes.
    Keywords: Medulloblastoma ; Oncolytic Virus ; Parvovirus H‐1pv ; Cellular Targets ; Myc ; Master Regulators Of Neurogenesis
    ISSN: 0020-7136
    E-ISSN: 1097-0215
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: The Journal of clinical investigation, April 2011, Vol.121(4), pp.1344-8
    Description: Pilocytic astrocytoma (PA) is the most common type of primary brain tumor in children and the second most frequent cancer in childhood. Children with incompletely resected PA represent a clinically challenging patient cohort for whom conventional adjuvant therapies are only moderately effective. This has produced high clinical demand for testing of new molecularly targeted treatments. However, the development of new therapeutics for PA has been hampered by the lack of an adequate in vivo tumor model. Recent studies have identified activation of MAPK signaling, mainly by oncogenic BRAF activation, as a hallmark genetic event in the pathogenesis of human PA. Using in vivo retroviral somatic gene transfer into mouse neural progenitor cells, we have shown here that ectopic expression of the activated BRAF kinase domain is sufficient to induce PA in mice. Further in vitro analyses demonstrated that overexpression of activated BRAF led to increased proliferation of primary mouse astrocytes that could be inhibited by treatment with the kinase inhibitor sorafenib. Our in vivo model for PA shows that the activated BRAF kinase domain is sufficient to induce PA and highlights its role as a potential therapeutic target.
    Keywords: Astrocytoma -- Etiology ; Brain Neoplasms -- Etiology ; Proto-Oncogene Proteins B-Raf -- Genetics
    ISSN: 00219738
    E-ISSN: 1558-8238
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: International Journal of Cancer, 01 May 2013, Vol.132(9), pp.2200-2208
    Description: Inhibition of histone deacetylase (HDAC) activity as stand‐alone or combination therapy represents a promising therapeutic approach in oncology. The pan‐ or class I HDAC inhibitors (HDACi) currently approved or in clinical studies for oncology give rise to dose‐limiting toxicities, presumably because of the inhibition of several HDACs. This could potentially be overcome by selective blockade of single HDAC family members. Here we report that HDAC11, the most recently identified zinc‐dependent HDAC, is overexpressed in several carcinomas as compared to corresponding healthy tissues. HDAC11 depletion is sufficient to cause cell death and to inhibit metabolic activity in HCT‐116 colon, PC‐3 prostate, MCF‐7 breast and SK‐OV‐3 ovarian cancer cell lines. The antitumoral effect induced can be mimicked by enforced expression of a catalytically impaired HDAC11 variant, suggesting that inhibition of the enzymatic activity of HDAC11 by small molecules could trigger the desired phenotypic changes. HDAC11 depletion in normal cells causes no changes in metabolic activity and viability, strongly suggesting that tumor‐selective effects can be achieved. Altogether, our data show that HDAC11 plays a critical role in cancer cell survival and may represent a novel drug target in oncology. What's new? Histone deacetylase (HDAC) enzymes influence the regulation of numerous cellular processes, and their inhibition by small molecules has been shown to provide benefits against multiple cancer types. Here, HDAC11, a recently identified member of the HDAC family, was found to play an important role in the control of proliferation and survival pathways in several carcinoma cell lines. The high incidence of the tumors represented suggests that HDAC11 could be a valuable drug target in oncology.
    Keywords: Chromatin Modulation ; Targeted Therapy ; Histone Deacetylase ; Colon Cancer ; Prostate Cancer
    ISSN: 0020-7136
    E-ISSN: 1097-0215
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Cellular and Molecular Life Sciences, 2012, Vol.69(11), pp.1799-1811
    Description: Pilocytic astrocytoma (PA) is the most common tumor of the pediatric central nervous system (CNS). A body of research over recent years has demonstrated a key role for mitogen-activated protein kinase (MAPK) pathway signaling in the development and behavior of PAs. Several mechanisms lead to activation of this pathway in PA, mostly in a mutually exclusive manner, with constitutive BRAF kinase activation subsequent to gene fusion being the most frequent. The high specificity of this fusion to PA when compared with other CNS tumors has diagnostic utility. In addition, the frequency of alteration of this key pathway provides an opportunity for molecularly targeted therapy in this tumor. Here, we review the current knowledge on mechanisms of MAPK activation in PA and some of the downstream consequences of this activation, which are now starting to be elucidated both in vitro and in vivo, as well as clinical considerations and possible future directions.
    Keywords: Pilocytic ; Astrocytoma ; Low grade glioma ; LGG ; BRAF ; Fusion ; MAPK ; Senescence
    ISSN: 1420-682X
    E-ISSN: 1420-9071
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 09 July 2013, Vol.110(28), pp.E2592-601
    Description: Tumor cells activate autophagy in response to chemotherapy-induced DNA damage as a survival program to cope with metabolic stress. Here, we provide in vitro and in vivo evidence that histone deacetylase (HDAC)10 promotes autophagy-mediated survival in neuroblastoma cells. We show that both knockdown and inhibition of HDAC10 effectively disrupted autophagy associated with sensitization to cytotoxic drug treatment in a panel of highly malignant V-MYC myelocytomatosis viral-related oncogene, neuroblastoma derived-amplified neuroblastoma cell lines, in contrast to nontransformed cells. HDAC10 depletion in neuroblastoma cells interrupted autophagic flux and induced accumulation of autophagosomes, lysosomes, and a prominent substrate of the autophagic degradation pathway, p62/sequestosome 1. Enforced HDAC10 expression protected neuroblastoma cells against doxorubicin treatment through interaction with heat shock protein 70 family proteins, causing their deacetylation. Conversely, heat shock protein 70/heat shock cognate 70 was acetylated in HDAC10-depleted cells. HDAC10 expression levels in high-risk neuroblastomas correlated with autophagy in gene-set analysis and predicted treatment success in patients with advanced stage 4 neuroblastomas. Our results demonstrate that HDAC10 protects cancer cells from cytotoxic agents by mediating autophagy and identify this HDAC isozyme as a druggable regulator of advanced-stage tumor cell survival. Moreover, these results propose a promising way to considerably improve treatment response in the neuroblastoma patient subgroup with the poorest outcome.
    Keywords: Hdac Inhibitor ; Childhood Tumors ; Drug Resistance ; Autophagy -- Physiology ; Cell Survival -- Physiology ; Histone Deacetylases -- Physiology
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: CNS oncology, July 2013, Vol.2(4), pp.359-76
    Description: Histone deacetylase inhibitors (HDACis) have fascinated researchers in almost all fields of oncology for many years owing to their pleiotropic effects on nearly every aspect of cancer biology. Since the approval of the first HDACi vorinostat for the treatment of cutaneous T-cell leukemia in 2006, more than a hundred clinical trials have been initiated with a HDACi as a single agent or in combination therapy. Although a number of epigenetic and nonepigenetic molecular mechanisms of action have been proposed, biomarkers for response prediction and patient selection are still lacking. One of the inherent problems in the field of HDACis is their 'reverse' history of drug development: these compounds reached clinical application at an early stage, before the biology of their targets, HDAC1-11, was sufficiently understood. This review summarizes the current knowledge on the human family of HDACs as drug targets in pediatric and adult brain tumors, the efficacy and molecular action of HDACis in preclinical models, as well as the current status of the clinical development of these compounds in the field of neuro-oncology.
    Keywords: Brain Neoplasms -- Drug Therapy ; Histone Deacetylase Inhibitors -- Therapeutic Use ; Histone Deacetylases -- Metabolism
    ISSN: 20450907
    E-ISSN: 2045-0915
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: International Journal of Cancer, 01 September 2010, Vol.127(5), pp.1230-1239
    Description: Despite multimodal therapeutic concepts, advanced localized and high‐risk neuroblastoma remains a therapeutic challenge with a long‐term survival rate below 50%. Consequently, new modalities for the treatment of neuroblastoma, ., oncolytic virotherapy are urgently required. H‐1PV is a rodent parvovirus devoid of relevant pathogenic effects in infected adult animals. In contrast, the virus has oncolytic properties and is particularly cytotoxic for transformed or tumor‐derived cells of various species including cells of human origin. Here, a preclinical assessment of the application of oncolytic H‐1PV for the treatment of neuroblastoma cells was performed. Infection efficiency, viral replication and lytic activity of H‐1PV were analyzed in 11 neuroblastoma cell lines with different MYCN status. Oncoselectivity of the virus was confirmed by the infection of short term cultures of nonmalignant infant cells of different origin. In these nontransformed cells, no effect of H‐1PV on viability or morphology of the cells was observed. In contrast, a lytic infection was induced in all neuroblastoma cell lines examined at MOIs between 0.001 and 10 pfu/cell. H‐1PV actively replicated with virus titres increasing up to 5,000‐fold within 48–96 hr after infection. The lytic effect of H‐1PV was observed independent of MYCN oncogene amplification or differentiation status. Moreover, a significant G2‐arrest and induction of apoptosis could be demonstrated. Infection efficiency, rapid virus replication and exhaustive lytic effects on neuroblastoma cells together with the low toxicity of H‐1PV for nontransformed cells, render this parvovirus a promising candidate for oncolytic virotherapy of neuroblastoma.
    Keywords: Neuroblastoma ; Oncolytic Virus ; Parvovirus H‐1pv ; Apoptosis
    ISSN: 0020-7136
    E-ISSN: 1097-0215
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Nature, 2014, Vol.510(7506), p.537
    Description: Epigenetic alterations, that is, disruption of DNA methylation and chromatin architecture, are now acknowledged as a universal feature of tumorigenesis. Medulloblastoma, a clinically challenging, malignant childhood brain tumour, is no exception. Despite much progress from recent genomics studies, with recurrent changes identified in each of the four distinct tumour subgroups (WNT-pathway-activated, SHH-pathway-activated, and the less-well-characterized Group 3 and Group 4), many cases still lack an obvious genetic driver. Here we present whole-genome bisulphite-sequencing data from thirty-four human and five murine tumours plus eight human and three murine normal controls, augmented with matched whole-genome, RNA and chromatin immunoprecipitation sequencing data. This comprehensive data set allowed us to decipher several features underlying the interplay between the genome, epigenome and transcriptome, and its effects on medulloblastoma pathophysiology. Most notable were highly prevalent regions of hypomethylation correlating with increased gene expression, extending tens of kilobases downstream of transcription start sites. Focal regions of low methylation linked to transcription-factor-binding sites shed light on differential transcriptional networks between subgroups, whereas increased methylation due to re-normalization of repressed chromatin in DNA methylation valleys was positively correlated with gene expression. Large, partially methylated domains affecting up to one-third of the genome showed increased mutation rates and gene silencing in a subgroup-specific fashion. Epigenetic alterations also affected novel medulloblastoma candidate genes (for example, LIN28B), resulting in alternative promoter usage and/or differential messenger RNA/microRNA expression. Analysis of mouse medulloblastoma and precursor-cell methylation demonstrated a somatic origin for many alterations. Our data provide insights into the epigenetic regulation of transcription and genome organization in medulloblastoma pathogenesis, which are probably also of importance in a wider developmental and disease context.
    Keywords: Gene Expression Regulation, Neoplastic ; Gene Silencing ; DNA Methylation -- Genetics ; Medulloblastoma -- Genetics ; Sequence Analysis, DNA -- Methods;
    ISSN: 0028-0836
    E-ISSN: 1476-4687
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Nature, 2012, Vol.482(7384), p.226
    Description: Glioblastoma multiforme (GBM) is a lethal brain tumour in adults and children. However, DNA copy number and gene expression signatures indicate differences between adult and paediatric cases (1-4). To explore the genetic events underlying this distinction, we sequenced the exomes of 48 paediatric GBM samples. Somatic mutations in the H3.3-ATRX-DAXX chromatin remodelling pathway were identified in 44% of tumours (21/48). Recurrent mutations in H3F3A, which encodes the replication-independent histone 3 variant H3.3, were observed in 31% of tumours, and led to amino acid substitutions at two critical positions within the histone tail (K27M, G34R/G34V) involved in key regulatory post-translational modifications. Mutations in ATRX([alpha]-thalassaemia/mental retardation syndrome X-linked) (5) and DAXX (death-domain associated protein), encoding two subunits of a chromatin remodelling complex required for H3.3 incorporation at pericentric heterochromatin and telomeres (6,7), were identified in 31% of samples overall, and in 100% of tumours harbouring a G34R or G34V H3.3 mutation. Somatic TP53 mutations were identified in 54% of all cases, and in 86% of samples with H3F3A and/or ATRX mutations. Screening of a large cohort of gliomas of various grades and histologies (n = 784) showed H3F3A mutations to be specific to GBM and highly prevalent in children and young adults. Furthermore, the presence of H3F3A/ATRX-DAXX/TP53 mutations was strongly associated with alternative lengthening of telomeres and specific gene expression profiles. This is, to our knowledge, the first report to highlight recurrent mutations in a regulatory histone in humans, and our data suggest that defects of the chromatin architecture underlie paediatric and young adult GBM pathogenesis.
    Keywords: Gene Mutation -- Research ; Dna -- Research ; Dna -- Physiological Aspects ; Glioblastomas -- Genetic Aspects ; Glioblastomas -- Research ; Tumor Proteins -- Physiological Aspects ; Tumor Proteins -- Research;
    ISSN: 0028-0836
    E-ISSN: 14764687
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages