Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Article  (10)
  • Hydrogeology  (10)
  • Unsaturated Zone
  • 1
    Language: English
    In: Vadose Zone Journal, 2012, Vol.11(3), p.0
    Description: Recently, a new approach was introduced to directly measure unsaturated hydraulic conductivity in flux-controlled experiments--the multistep flux experiment. Thereby an overshoot in matric potential h (sub m) across drainage and infiltration fronts was observed. We extended this experimental approach to simultaneously measure the volumetric water content Theta within the sample and applied the method to a sand and a clay loam soil. The detailed trajectories within the h (sub m) -Theta space were obtained during a number of decreasing and increasing steps in infiltration rate. This clearly demonstrates the type and magnitude of hydraulic nonequilibrium under transient conditions where water content and matric potential deviate from a well-defined static relation. We also compared the directly measured hydraulic conductivities with those obtained from classical multistep outflow experiments and found that nonequilibrium dynamics might lead to an underestimation of hydraulic conductivity when obtained from an inverse solution of Richards" equation. We provide a qualitative explanation of nonequilibrium that depends on the structure of the material and the type and magnitude of external forcing. The new experimental setup is considered to be a valuable tool to actually quantify nonequilibrium effects. This will make it possible to represent this relevant phenomenon in future modeling concepts.
    Keywords: Hydrogeology ; Aquifers ; Climate Forcing ; Discharge ; Drainage ; Experimental Studies ; Ground Water ; Hydraulic Conductivity ; Hydrodynamics ; Hysteresis ; Infiltration ; Models ; Richards Equation ; Saturation ; Soil Mechanics ; Solute Transport ; Transport ; Unsaturated Zone;
    ISSN: Vadose Zone Journal
    E-ISSN: 1539-1663
    Source: CrossRef
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Vadose Zone Journal, 2015, Vol.14(5), p.0
    Description: We used X-ray computed microtomography to study gas trapping in a fluctuating water table. Our results show that capillary forces control trapping and phase distribution in dynamic capillary fringes. In porous media, the nonwetting phase is trapped on water saturation due to capillary forces acting in a heterogeneous porous structure. Within the capillary fringe, the gas phase is trapped and released along with the fluctuation of the water table, creating a highly active zone for biological transformations and mass transport. We conducted column experiments to observe and quantify the magnitude and structure of the trapped gas phase at the pore scale using computed microtomography. Different grain size distributions of glass beads were used to study the effect of the pore structure on trapping at various capillary numbers. Viscous forces were found to have negligible impact on phase trapping compared with capillary and buoyancy forces. Residual gas saturations ranged from 0.5 to 10%, while residual saturation increased with decreasing grain size. The gas phase was trapped by snap-off in single pores but also in pore clusters, while this single-pore trapping was dominant for grains larger than 1 mm in diameter. Gas surface area was found to increase linearly with increasing gas volume and with decreasing grain size.
    Keywords: Grain Size ; Water Table ; Mass Transport ; Buoyancy ; Pores ; Porous Media ; Particle Size ; Water Table ; Saturation ; Vadose Water ; Fluctuations ; Trapping ; Buoyancy ; Methods and Instruments ; General;
    ISSN: Vadose Zone Journal
    E-ISSN: 1539-1663
    Source: CrossRef
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Vadose Zone Journal, 2011, Vol.10(2), p.654
    Description: The unsaturated hydraulic conductivity function is the dominant material property for modeling soil water dynamics. Because it is difficult to measure directly, it is often derived from the water retention characteristic combined with a geometric model of the pore space. In this study, we developed an automated, simple multistep flux (MSF) experiment to directly measure unsaturated conductivities, K(psi (sub m) ), at a number of water potentials, psi (sub m) , using the experimental setup of classical multistep outflow (MSO) experiments. In contrast to the MSO experiment, the MSF experiment measures the conductivity directly at a spatially constant water potential assuming macroscopically homogeneous materials. Additionally, the proposed method reveals the hysteresis of K(psi (sub m) ) with respect to increasing and decreasing water potentials as well as the temporal dynamics of K(psi (sub m) ) during transient-flow conditions. This temporal behavior is explained by the dynamics of fluid configurations at the pore scale during drainage and imbibition leading to hydraulic nonequilibrium. It may provoke a systematic underestimation of hydraulic conductivity using inverse optimization of K(psi (sub m) ) based on classical MSO experiments. The new approach will improve the determination of K(psi (sub m) ) and it provides an experimental tool to quantify the effects of hydraulic nonequilibrium under transient conditions.
    Keywords: Hydrogeology ; Experimental Studies ; Geometry ; Ground Water ; Hydraulic Conductivity ; Hysteresis ; Inverse Problem ; Mathematical Methods ; Measurement ; Models ; Movement ; Optimization ; Phase Equilibria ; Soils ; Unsaturated Zone;
    ISSN: Vadose Zone Journal
    E-ISSN: 1539-1663
    Source: CrossRef
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Vadose Zone Journal, 2013, Vol.12(3), p.0
    Description: Soils are structured on multiple spatial scales, originating from inhomogeneities of the parent material, pedogenesis, soil organisms, plant roots, or tillage. This leads to heterogeneities that cause variability of local measurements of hydraulic state variables and affects the flow behavior of water in soil. Whereas in real-world systems, the true underlying structures can never be absolutely known, it is appealing to employ synthetic or "virtual" experiments for assessing general properties of flow in porous media and grasping the main physical mechanisms. With this aim, three two-dimensional virtual realities with increasing structural complexity, representing cultivated soils with hierarchical spatial heterogeneity on multiple scales were constructed by the interdisciplinary research group Virtual Institute of the Helmholtz Association (INVEST). At these systems, numerical simulations of water dynamics including a heavy rain, a redistribution, and a long-lasting evaporation period were performed. The technical aspects of the construction of the virtual soils and results of the forward simulations have been presented in a paper by Schluter et al. (2012). In this follow-up paper, we use inverse modeling to investigate measurements in virtual vertical soil profiles, mimicking typical field monitoring campaigns with moisture content and matric potential sensors placed at five depths. Contrary to the real situation, we can interpret observed data, their variability, estimated hydraulic properties, and predicted water balance in the light of the known truth. Our results showed that measurements, particularly those of water contents, varied strongly with measuring position. Using data from single profiles in systems similar to our virtual soils thus will lead to very different estimates of the soil hydraulic properties. As a consequence, the correct calculation of the water balance is rather a lucky coincidence than the rule. However, the average of the predicted water balances obtained from the one-dimensional simulations, and the estimated soil hydraulic properties agreed very well with those attained from the two-dimensional systems.
    Keywords: Soils ; Hydrogeology ; Boundary Interactions ; Evaporation ; Grain Size ; Heterogeneous Materials ; Hydrodynamics ; Infiltration ; Interpretation ; Inverse Problem ; Irrigation ; Matric Head ; Measurement ; Moisture ; One-Dimensional Models ; Quantitative Analysis ; Simulation ; Size Distribution ; Soils ; Spatial Distribution ; Tdr Data ; Two-Dimensional Models ; Unsaturated Zone ; Van Genuchten-Mualem Parameters ; Water ; Water Balance;
    ISSN: Vadose Zone Journal
    E-ISSN: 1539-1663
    Source: CrossRef
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Geoderma, 01 September 2018, Vol.325, pp.37-48
    Description: Organic particles including microorganisms are a significant fraction of the mobile organic matter (MOM) pool that contributes to initial pedogenesis. Still, the dynamics and the interplay of the multitude of processes that control the mobilization, transport, and retention of MOM are vastly unclear. We studied this interplay using an ‘artificial soil’ as model for a young, unstructured soil with defined initial composition employing a novel two-layer column experiment. The upstream layer was composed of a mixture of well-defined mineral phases, a sterile organic matter source and a diverse, natural microbial inoculant mimicking an organic-rich topsoil. The downstream layer, mimicking the subsoil, was composed of the mineral phases, only. Columns were run under water-unsaturated flow conditions with multiple flow interruptions to reflect natural flow regimes and to detect possible non-equilibrium processes. Pore system changes caused by flow were inspected by scanning electron microscopy and computed micro-tomography. MOM-related physicochemical effluent parameters and bacterial community diversity and abundance were assessed by molecular analysis of the effluent and the solid phase obtained after the long-term irrigation experiment (75 d). Tomographic data showed homogeneous packing of the fine-grained media (sandy loam). During flow, the initially single-grain structured artificial soil showed no connected macropores. In total, 6% of the initial top layer organic matter was mobile. The release and transport of particulate (1.2%) and dissolved organic matter (4.8%) including bacteria were controlled by non-equilibrium conditions. Bacterial cells were released and selectively transported to downstream layer resulting in a depth-dependent and selective establishment of bacterial communities in the previously sterile artificial soil. This study underlines the importance of bacterial transport from the surface or topsoil for colonization and maturation of downstream compartments. This initial colonization of pristine surfaces is the major step in forming biogeochemical interfaces - the prominent locations of intensive biological activity and element turnover that seem to play a major role for the functioning of soil.
    Keywords: Mobile Organic Matter ; Unsaturated Two-Layer Column Experiment ; Experimental Pedogenesis ; Artificial Soil ; Computed Micro-Tomography ; Molecular Analysis ; Agriculture
    ISSN: 0016-7061
    E-ISSN: 1872-6259
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Vadose Zone Journal, 2012, Vol.11(4), p.0
    Description: The hydraulic behavior of soil is determined by the spatial heterogeneity of its hydraulic properties. The interplay among parent material, pedogenesis, and tillage leads to characteristic structures in cultivated soils. Tillage-induced features like a loosely aggregated seed bed, a compacted plow pan, and soil compaction beneath tractor ruts overlay natural features such as facies and horizons. Assessing the impact of such structural components on vadose zone hydrology requires an observation scale of several meters and a resolution in the range of centimeters, which is not feasible with experimental setups. An alternative solution is the generation of synthetic but realistic structures and their hydraulic properties as a basis for modeling the hydraulic behavior in response to different boundary conditions. With such "virtual soils" at hand, comparative studies are possible that help explore the relation between soil architecture and soil function. We developed a structure generator that provides great flexibility in the design of virtual soils with nested heterogeneity. Virtual soils with increasing complexity were generated to explore scenarios of precipitation and evaporation for a period of several months. The simulations demonstrated that the structure and the hydraulic properties close to the soil surface originating from tillage clearly govern atmospheric boundary fluxes, while the impact of heterogeneity on groundwater recharge is more complex due to threshold effects, hydraulic nonequilibrium, and the interaction with atmospheric forcing. A comparison with one-dimensional, effective representations of these virtual soils demonstrated that upscaling of soil water dynamics becomes inaccurate when lateral fluxes become relevant at the scale of observation.
    Keywords: Hydrogeology ; Soils ; Agriculture ; Air ; Aquifers ; Boundary Conditions ; Ground Water ; Heterogeneity ; Hydraulic Conductivity ; Hydrodynamics ; Moisture ; Morphology ; Recharge ; Simulation ; Soil-Atmosphere Interface ; Soils ; Tillage ; Topsoil ; Unsaturated Zone ; Virtual Reality ; Water;
    ISSN: Vadose Zone Journal
    E-ISSN: 1539-1663
    Source: CrossRef
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Vadose Zone Journal, 2011, Vol.10(3), p.988
    Description: Recent studies have shown that rhizosphere hydraulic properties may differ from those of the bulk soil. Specifically, mucilage at the root-soil interface may increase the rhizosphere water holding capacity and hydraulic conductivity during drying. The goal of this study was to point out the implications of such altered rhizosphere hydraulic properties for soil-plant water relations. We addressed this problem through modeling based on a steady-rate approach. We calculated the water flow toward a single root assuming that the rhizosphere and bulk soil were two concentric cylinders having different hydraulic properties. Based on our previous experimental results, we assumed that the rhizosphere had higher water holding capacity and unsaturated conductivity than the bulk soil. The results showed that the water potential gradients in the rhizosphere were much smaller than in the bulk soil. The consequence is that the rhizosphere attenuated and delayed the drop in water potential in the vicinity of the root surface when the soil dried. This led to increased water availability to plants, as well as to higher effective conductivity under unsaturated conditions. The reasons were two: (i) thanks to the high unsaturated conductivity of the rhizosphere, the radius of water uptake was extended from the root to the rhizosphere surface; and (ii) thanks to the high soil water capacity of the rhizosphere, the water depletion in the bulk soil was compensated by water depletion in the rhizosphere. We conclude that under the assumed conditions, the rhizosphere works as an optimal hydraulic conductor and as a reservoir of water that can be taken up when water in the bulk soil becomes limiting.
    Keywords: Agriculture;
    ISSN: Vadose Zone Journal
    E-ISSN: 1539-1663
    Source: CrossRef
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Water Resources Research, March 2007, Vol.43(3), pp.n/a-n/a
    Description: Large‐scale models of transient flow processes in the unsaturated zone require, in general, upscaling of the flow problem in order to capture the impact of heterogeneities on a small scale, which cannot be resolved by the model. Effective parameters for the upscaled models are often derived from second‐order stochastic properties of the parameter fields. Such properties are good quantifications for parameter fields, which are multi‐Gaussian. However, the structure of soil does rarely resemble these kinds of fields. The non‐multi‐Gaussian field properties can lead to strong discrepancies between predictions of upscaled models and the averaged real flow process. In particular, the connected paths of parameter ranges of the medium are important features, which are usually not taken into account in stochastic approaches. They are determined here by the Euler number of one‐cut indicator fields. Methods to predict effective parameters are needed that incorporate this type of information. We discuss different simple and fast approaches for estimating the effective parameter for upscaled models of slow transient flow processes in the unsaturated zone, where connected paths of the material may be taken into account. Upscaled models are derived with the assumption of capillary equilibrium. The effective parameters are calculated using effective media approaches. We also discuss the limits of the applicability of these methods.
    Keywords: Richards Equation ; Unsaturated Flow ; Upscaling
    ISSN: 0043-1397
    E-ISSN: 1944-7973
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Geoderma, 15 July 2019, Vol.346, pp.52-62
    Description: Some soil physical properties can easily be measured using classical laboratory methods. However, explicit valuable information on the real morphology of the pore structure as well as soil physical properties cannot be obtained at the same time with classical methods. This requires non-destructive measurements such as X-ray computed tomography (CT). However, explicit valuable information on the real morphology of the pore structure as well as soil physical properties cannot be obtained at the same time with classical methods. This paper combines parameters obtained from CT analysis (mean macropore diameter, macroporosity, pore connectivity, anisotropy) and classical laboratory methods (dry bulk and aggregate density, saturated hydraulic conductivity, mechanical precompression stress) to analyse soil compaction, exemplified on samples from two tillage treatments (cultivator and plough) and at two moisture states (6 and 1000 kPa matric potential) on a Chernozem collected at a soil depth of 16–22 cm (texture 0–30 cm: silty clay loam). The study shows that the matric potential can have a decisive impact on the mechanical stability of soil. In the loose but less stable plough treatment a more negative matric potential was clearly beneficial to the mechanical stability. In already dense soil structures, as in the cultivator treatment, a reduction of water content was less effective in increasing soil stability. The CT parameters were all closely and uniquely related to each other. The shown CT parameters can be used for a standardized characterization of the soil. Ploughing has a positive effect on soil structure which persists only as long as macroporosity and mean macropore diameter remain high. Plough maintains higher pore connectivity when compacted under dry conditions.
    Keywords: X-Ray CT ; Mechanical Soil Analysis ; Conservation Tillage ; Conventional Tillage ; Soil Compaction ; Precompression Stress ; Agriculture
    ISSN: 0016-7061
    E-ISSN: 1872-6259
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Water Resources Research, May 2006, Vol.42(5), pp.n/a-n/a
    Description: This paper presents a vision that advocates hydropedology as an advantageous integration of pedology and hydrology for studying the intimate relationships between soil, landscape, and hydrology. Landscape water flux is suggested as a unifying precept for hydropedology, through which pedologic and hydrologic expertise can be better integrated. Landscape water flux here encompasses the source, storage, flux, pathway, residence time, availability, and spatiotemporal distribution of water in the root and deep vadose zones within the landscape. After illustrating multiple knowledge gaps that can be addressed by the synergistic integration of pedology and hydrology, we suggest five scientific hypotheses that are critical to advancing hydropedology and enhancing the prediction of landscape water flux. We then present interlinked strategies for achieving the stated vision. It is our hope that by working together, hydrologists and pedologists, along with scientists in related disciplines, can better guide data acquisition, knowledge integration, and model‐based prediction so as to advance the hydrologic sciences in the next decade and beyond.
    Keywords: Catchment Hydrology ; Landscape Processes ; Scale ; Soil Hydrology ; Soil Physics ; Vadose Zone
    ISSN: 0043-1397
    E-ISSN: 1944-7973
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages