Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Geoarchaeology, July 2015, Vol.30(4), pp.369-378
    Description: Roman cisterns served as rainwater storage devices for centuries and are densely distributed in parts of northern Jordan. A major earthquake hit the region . A.D. 750 and in a short time many settlements were abandoned. As a consequence, most cisterns were not maintained, and they filled with sediments that today provide a postabandonment depositional record. In two field surveys, we mapped the locations of more than 100 cisterns in the Wadi Al‐Arab basin and selected two for detailed stratigraphic analysis that included C and optically stimulated luminescence dating. Catchment basin area for each cistern was determined by differential GPS. Both cisterns filled with sediments after the great earthquake and consequent abandonment of the region. Calculated sediment volumes are translated to long‐term average sediment export rates of 2.6–6.6 t haa, which are comparable to erosion and sediment yield rates from other studies within the Mediterranean region. Our pilot study suggests that this approach can be applied elsewhere to calculate long‐term sediment export rates on hill slopes containing relict cisterns.
    Keywords: Quaternary Geology ; Sedimentary Petrology ; Arid Environment ; Asia ; Cenozoic ; Chronostratigraphy ; Clay Minerals ; Climate Change ; Climatic Controls ; Dates ; Depositional Environment ; Desertification ; Drainage Basins ; Erodibility ; Erosion ; Erosion Rates ; Holocene ; Human Activity ; Human Ecology ; Hydrology ; Jordan ; Jordan River ; Land Use ; Mediterranean Region ; Middle Ages ; Middle East ; Optically Stimulated Luminescence ; Paleogeography ; Permeability ; Quaternary ; Rainfall ; Reconstruction ; Roman Period ; Sediment Yield ; Sedimentation ; Sheet Silicates ; Silicates ; Soil Erosion ; Stratigraphy ; Terrestrial Environment ; Upper Holocene ; Urban Environment ; Wadi Al-Arab ; Water Resources;
    ISSN: 0883-6353
    E-ISSN: 1520-6548
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Ecohydrology, September 2018, Vol.11(6), pp.n/a-n/a
    Description: By applying the newly developed flow cell (FC) concept, this study investigated the impact of small‐scale spatial variations (millimetre to centimetre) in organic matter (OM) composition (diffusive reflectance infrared Fourier transform spectroscopy), biological activity (zymography), and wettability (contact angle [CA]) on transport processes (tracer experiments, radiography). Experiments were conducted in five undisturbed soil slices (millimetre apart), consisting of a sandy matrix with an embedded loamy band. In the loamy band increased enzyme activities and OM (10 mm apart) were found compared with the sand matrix, with no interrelations although spatial autocorrelation ranges were up to 7 cm. CAs were increased (0–110°) above the loamy band and were negatively correlated with acid phosphatase. Missing correlations were probably attributed to texture variations between soil slices. A general correlation between CA and C content (bulk) were confirmed. Variability in texture and hydraulic properties led to the formation of heterogeneous flow patterns and probably to heterogeneously distributed interfacial properties. The new FC concept allows process evaluation on the millimetre scale to analyse spatial relations, that is, between small‐scale textural changes on transport processes and biological responses. The concept has been proved as a versatile tool to analyse spatial distribution of biological and interfacial soil properties in conjunction with the analysis of complex micro‐hydraulic processes for undisturbed soil samples. The concept may be improved by additional nondestructive imaging methods, which is especially challenging for the detection of small‐scale textural changes.
    Keywords: Drift Spectroscopy ; Extracellular Enzyme Activity ; Flow Cell ; Soil Water Repellency ; Transport Processes ; Undisturbed Soil ; X‐Ray Radiography
    ISSN: 1936-0584
    E-ISSN: 1936-0592
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Water Resources Research, May 2006, Vol.42(5), pp.n/a-n/a
    Description: This paper presents a vision that advocates hydropedology as an advantageous integration of pedology and hydrology for studying the intimate relationships between soil, landscape, and hydrology. Landscape water flux is suggested as a unifying precept for hydropedology, through which pedologic and hydrologic expertise can be better integrated. Landscape water flux here encompasses the source, storage, flux, pathway, residence time, availability, and spatiotemporal distribution of water in the root and deep vadose zones within the landscape. After illustrating multiple knowledge gaps that can be addressed by the synergistic integration of pedology and hydrology, we suggest five scientific hypotheses that are critical to advancing hydropedology and enhancing the prediction of landscape water flux. We then present interlinked strategies for achieving the stated vision. It is our hope that by working together, hydrologists and pedologists, along with scientists in related disciplines, can better guide data acquisition, knowledge integration, and model‐based prediction so as to advance the hydrologic sciences in the next decade and beyond.
    Keywords: Catchment Hydrology ; Landscape Processes ; Scale ; Soil Hydrology ; Soil Physics ; Vadose Zone
    ISSN: 0043-1397
    E-ISSN: 1944-7973
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages