Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Estuarine, Coastal and Shelf Science, 2010, Vol.87(1), pp.11-20
    Description: Visual traces of iron reduction and oxidation are linked to the redox status of soils and have been used to characterise the quality of agricultural soils. We tested whether this feature could also be used to explain the spatial pattern of the natural vegetation of tidal habitats. If so, an easy assessment of the effect of rising sea level on tidal ecosystems would be possible. Our study was conducted at the salt marshes of the northern lagoon of Venice, which are strongly threatened by erosion and rising sea level and are part of the world heritage “Venice and its lagoon”. We analysed the abundance of plant species at 255 sampling points along a land–sea gradient. In addition, we surveyed the redox morphology (presence/absence of red iron oxide mottles in the greyish topsoil horizons) of the soils and the presence of disturbances. We used indicator species analysis, correlation trees and multivariate regression trees to analyse relations between soil properties and plant species distribution. Plant species with known sensitivity to anaerobic conditions (e.g. ) were identified as indicators for oxic soils (showing iron oxide mottles within a greyish soil matrix). Plant species that tolerate a low redox potential (e.g. ) were identified as indicators for anoxic soils (greyish matrix without oxide mottles). Correlation trees and multivariate regression trees indicate the dominant role of the redox morphology of the soils in plant species distribution. In addition, the distance from the mainland and the presence of disturbances were identified as tree-splitting variables. The small-scale variation of oxygen availability plays a key role for the biodiversity of salt marsh ecosystems. Our results suggest that the redox morphology of salt marsh soils indicates the plant availability of oxygen. Thus, the consideration of this indicator may enable an understanding of the heterogeneity of biological processes in oxygen-limited systems and may be a sensitive and easy-to-use tool to assess human impacts on salt marsh ecosystems.
    Keywords: Coastal Wetlands ; Iron Oxides ; Halophyte Ecology ; Regression Trees ; Indicator Species Analysis ; Classification of Marsh Soils ; Biology ; Oceanography
    ISSN: 0272-7714
    E-ISSN: 1096-0015
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Geochimica et Cosmochimica Acta, 2006, Vol.70(3), pp.595-607
    Description: Anions of polycarboxylic low-molecular-weight organic acids (LMWOA) compete with phosphate for sorption sites of hydrous Fe and Al oxides. To test whether the sorption of LMWOA anions decreases the accessibility of micropores (〈2 nm) of goethite (α-FeOOH) for phosphate, we studied the kinetics of citrate-induced changes in microporosity and the phosphate sorption kinetics of synthetic goethite in the presence and absence of citrate in batch systems for 3 weeks (500 μM of each ion, pH 5). We also used C-coated goethite obtained after sorption of dissolved organic matter in order to simulate organic coatings in the soil. We analyzed our samples with N adsorption and electrophoretic mobility measurements. Citrate clogged the micropores of both adsorbents by up to 13% within 1 h of contact. The micropore volume decreased with increasing concentration and residence time of citrate. In the absence of citrate, phosphate diffused into micropores of the pure and C-coated goethite. The C coating (5.6 μmol C m ) did not impair the intraparticle diffusion of phosphate. In the presence of citrate, the diffusion of phosphate into the micropores of both adsorbents was strongly impaired. We attribute this to the micropore clogging and the ligand-induced dissolution of goethite by citrate. While the diffusion limitation of phosphate by citrate was stronger when citrate was added before phosphate to pure goethite, the order of addition of both ions to C-coated goethite had only a minor effect on the intraparticle diffusion of phosphate. Micropore clogging and dissolution of microporous hydrous Fe and Al oxides may be regarded as potential strategies of plants to cope with phosphate deficiency in addition to ligand-exchange.
    Keywords: Geology
    ISSN: 0016-7037
    E-ISSN: 1872-9533
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Catena, April 2016, Vol.139, pp.9-18
    Description: Riparian woodlands consist of different landscape units characterized by different hydroecomorphological site conditions that are reflected in the distribution of soils and tree species. These conditions are determined by flooding frequency and duration, distance to river channels, elevation and water flow velocity. The influence of these environmental drivers on the stabilization of soil organic matter (SOM) has as yet not been investigated. Hence, the aim of our study is to link soil formation and its drivers with stabilizing processes of SOM in riparian floodplain forests. We investigated soils and sediments at two sites in the ash–maple–elm–oak alluvial forest zone (AMEO sites) and two sites in the willow-poplar alluvial forest zone (WiP sites) within the riparian zone of the Danube near Vienna (Austria). Sediments and soils were characterized based on texture, contents of organic carbon (OC), nitrogen, Fe oxides, and soil pH. Density fractionation was used to separate OC fractions in terms of stabilization process and resulting organic matter (OM) turnover time: the free light fraction (fast turnover), the light fraction occluded in aggregates (intermediate turnover) and the heavy fraction of OM associated tightly to mineral surfaces (slow turnover). At both sites, soil and sediment properties reflect the hydroecomorphological site conditions for formation of the landscape units in the riparian zone: Soils at AMEO sites develop during constant deposition of fine-textured sediment while water flow velocity is low. Progressing soil development causes a continuous decrease in OC content with increasing soil depth, mainly from fractions with fast and intermediate turnover. As a consequence the heavy fraction clearly dominates with around 90% of OC. Temporally variable flooding conditions with occurring turbulences found at WiP sites result in a discontinuous change of soil properties with increasing soil depth. Former topsoil horizons buried by huge amounts of sediments seem to keep the OC fractionation typical for topsoil horizons with extraordinarily high amounts of light fraction OM (free and occluded) representing 20–40% of total OC. The presented results confirm that sedimentation and soil formation are simultaneous processes at AMEO sites. At WiP sites both processes seem uncoupled with alternate phases of sedimentation and soil formation. Thus, the frequent burial of topsoil material formed at WiP sites seems to enable the conservation of unstable organic matter fractions at this part of active floodplains.
    Keywords: Fluvisol Formation ; Soil Organic Matter ; Density Fractionation ; Riparian Floodplains ; Soil Aggregates ; Riparian Forests ; Sciences (General) ; Geography ; Geology
    ISSN: 0341-8162
    E-ISSN: 1872-6887
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Soil Science Society of America Journal, Sept-Oct, 2006, Vol.70(5), p.1731(10)
    Description: Uronates are important constituents of maize mucilage and polyuronates are used as a simplified model of the soil--root interface. We tested whether galacturonate (GA) and polygalacturonate (PGA) impair the diffusion of phosphate (P[O.sub.4]) into and out of pores of a synthetic goethite (147 [m.sup.2] [g.sup.-1]) and whether the effect of maize mucigel (MU) is comparable to PGA. We measured the P[O.sub.4] desorption kinetics of goethites in batch experiments over 2 wk at pH 5. One part of the goethite was equilibrated with organic substances before P[O.sub.4] addition, another part after addition of P[O.sub.4]. Before the desorption experiments, the porosity of our samples was analyzed by [N.sub.2] gas adsorption. In each treatment a rapid initial desorption was followed by a slow desorption reaction, which is assigned to the diffusion of P[O.sub.4] out of mineral pores. No consistent relation between the micro- and mesoporosity and the rate of the slow P[O.sub.4] desorption was observed. Compared with the C-free control, only PGA and MU affected the fraction of P[O.sub.4] mobilized by the fast and slow desorption reaction: when PGA was sorbed to goethite before P[O.sub.4], twice as much P[O.sub.4] was mobilized via the fast reaction than in the treatment where P[O.sub.4] was sorbed before PGA, suggesting a decreased accessibility of goethite pores to P[O.sub.4]. Mucigel, however, showed reversed effects, which is ascribed to its differing chemical composition. In conclusion, PGA seems inappropriate as a model substance for maize MU collected from non-axenic sand cultures. Under the experimental conditions chosen, the efficacy of all organic substances to increase P[O.sub.4] solution concentrations by pore clogging and sorption competition is small.
    Keywords: Phosphates -- Research ; Sorption -- Research
    ISSN: 0361-5995
    E-ISSN: 14350661
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Soil Science Society of America Journal, Sept-Oct, 2006, Vol.70(5), p.1547(9)
    Description: Organic coatings on Fe oxides can decrease the accessibility of intraparticle pores for oxyanions like phosphate. We hypothesized that the slow sorption of phosphate to goethite coated with polygalacturonate (PGA) is controlled by the accessibility of external goethite surfaces to phosphate rather than by diffusion of phosphate into micropores ([empty set] 〈 2 nm). We studied the phosphate sorption kinetics of pure and PGA-coated goethites that differed in their microporosity ([N.sub.2] at 77 K, 46 vs. 31 [mm.sup.3] [g.sup.-1]). Because drying may affect the structure or surface coverage of PGA, we also tested the effect of freeze-drying on the slow phosphate sorption. The samples were examined by gas adsorption ([N.sub.2], C[O.sub.2]) and electrophoretic mobility measurements. Phosphate sorption and PGA-C desorption were studied in batch experiments for 3 wk at pH 5. In PGA-coated samples, the slow phosphate sorption was independent of micropore volume. Phosphate displaced on average 57% of PGA-C within 3 wk. Similar to phosphate sorption, the PGA-C desorption comprised a rapid initial desorption, which was followed by a slow C desorption. Sorption competition between phosphate and presorbed PGA depended on the 〈10-nm porosity and the C loading of the adsorbent. The efficacy of phosphate to desorb PGA generally increased after freeze-drying. We conclude for PGA-coated goethites that (i) freeze-drying biased the slow phosphate sorption by changing the structure/surface coverage of PGA, and (ii) within the time frame studied, micropores did not limit the rate of the slow phosphate sorption. Rather, the slow, gradual desorption of PGA and/or the diffusion of phosphate through PGA coatings controlled the slow phosphate sorption to PGA-coated goethite.
    Keywords: Mineralogical Research -- Analysis ; Phosphates -- Research ; Sorption -- Research
    ISSN: 0361-5995
    E-ISSN: 14350661
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages