Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lakes
Type of Medium
Language
Year
  • 1
    Language: English
    In: Journal of Applied Ecology, 1 August 2011, Vol.48(4), pp.916-925
    Description: 1. Shoreline development and the associated loss of littoral habitats represent a pervasive alteration of the ecological integrity of lakes and have been identified as major drivers for the loss of littoral biodiversity world-wide. Little is known about the effects of shoreline development on the structure of, and energy transfer in, littoral food webs, even though this information is urgently needed for management and mitigation measures. 2. We measured macroinvertebrate biomass and analysed potential food resources using stable isotopes (δ¹³C, δ¹⁵N) and mixing models to compare the complexity and the trophic base of littoral food webs between undeveloped and developed shorelines in three North German lowland lakes. 3. The lower diversity of littoral habitats found at developed shorelines was associated with lower diversity of food resources and consumers. Consequently, the number of trophic links in food webs at developed shorelines was up to one order of magnitude lower as compared with undeveloped shorelines. 4. Mixing model analysis showed that consumer biomass at undeveloped shorelines was mainly derived from the particulate organic matter (FPOM) and coarse particulate organic matter of terrestrial origin (CPOM). The contribution of CPOM to consumer biomass was twofold lower at developed shorelines, and consumer biomass was mainly derived from FPOM and suspended particulate organic matter. 5. Synthesis and application. Shoreline development impacts the flow of organic matter within littoral food webs primarily through the reduction in littoral habitat diversity. These effects are exacerbated by clearcutting of the riparian vegetation, which disrupts cross-boundary couplings between the riparian and the littoral zone. Lakeshore conservation should focus on preserving the structural integrity of the littoral zone, while restoration of coarse woody debris, reed and root habitats can be a cost-efficient measure to improve degraded lakeshores. The local effects of shoreline development demonstrated in this study might lead to whole-lake effects, but future studies are needed to derive thresholds at which shoreline development has consequences for the structure and functioning of the entire ecosystem.
    Keywords: Vegetation and Community ecology
    ISSN: 00218901
    E-ISSN: 13652664
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Hydrobiologia, 2016, Vol.768(1), pp.37-50
    Description: Length–mass relationships are widely used to estimate body mass from body dimensions for freshwater macroinvertebrates. The relationships are influenced by environmental conditions and should be applied within ecosystems and geographic regions similar to those for which they were estimated. However, very few relationships exist for littoral macroinvertebrates, and thus we provide length–mass relationships for macroinvertebrates from lakes of the Central European lowlands. We compared log-linear and nonlinear methods for fitting length–mass relationships and tested the smearing factor for removing bias in mass predictions from log-linear models. We also estimated conversion factors to correct for mass changes during ethanol preservation and assessed the transferability of our results to different geographical regions. We showed that the log-linear approach gave better results in fitting length–mass relationships, while residuals showed that nonlinear models over-predict the mass of small individuals. The smearing correction factor successfully removed bias introduced by log transformation, and relationships transferred well between lakes in the same and different geographical regions. In total, 52 bias-corrected length–mass relationships are provided for littoral macroinvertebrates that are applicable also to lakes in geographic regions with similar environmental conditions, such as the Central European lowlands or the temperate lowland zone of America.
    Keywords: Preservation conversion factor ; Smearing factor ; Length–mass relationships ; Macroinvertebrates ; Additive vs. multiplicative errors ; Log-linear vs. nonlinear regression
    ISSN: 0018-8158
    E-ISSN: 1573-5117
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Hydrobiologia, 2010, Vol.649(1), pp.365-373
    Description: Littoral macroinvertebrates are increasingly used for assessing the ecological status of lakes according to the EU Water Framework Directive. This requires harmonised sampling methods, but information on the appropriate spatial scale of the sampling as well as on the adequate sample sizes are mostly lacking. In this study, we compared the spatial variability of littoral (〈1.2 m water depth) macroinvertebrate community composition within habitats and within sites to test whether habitat-specific sampling can reduce their spatial variability. Furthermore, we determined the sample size necessary to obtain maximum species richness for a given habitat type. Spatial variability of macroinvertebrate community composition was significantly lower within habitats than within sampling sites, except for communities of coarse woody debris. Species–area curves revealed that a sample size of 1 m 2 per habitat was not sufficient to obtain the maximum species richness due to the dominance of rare species, which suggests that compilation of taxon inventories may require more exhaustive sampling with sampling sizes substantially larger than 1 m 2 . Separate analysis for species assigned to incidence classes showed that a mean area of 0.63 m 2 per habitat is sufficient to record all species with frequent and medium incidences, and 76% of the rare species. We conclude that habitat-specific sampling is an effective way to reduce the inherent spatial variability of littoral macroinvertebrate communities and that a sample size of 0.63 m 2 per habitat is sufficient to represent their dominant and subdominant elements. The application of this adequate sample size to other lake types than large oligotrophic lakes has to be exercised with caution, in particular if community composition and richness patterns differ. However, our results are based on data from lakes that represent the typical lake type found throughout the Central Baltic ecoregion ensuring its wider applicability in this ecoregion.
    Keywords: Coarse woody debris ; Spatial variability ; Species richness ; Species–area curves ; Water Framework Directive
    ISSN: 0018-8158
    E-ISSN: 1573-5117
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: PLoS ONE, 2016, Vol. 11(5)
    Description: Hydrogen stable isotopes (δ2H) have recently been used to complement δ13C and δ15N in food web studies due to their potentially greater power to separate sources of organic matter in aquatic food webs. However, uncertainties remain regarding the use of δ2H, since little is known about the potential variation in the amount of exchangeable hydrogen (Hex) among common sample materials or the patterns of δ2H when entire food webs are considered. We assessed differences in Hex among the typical sample materials in freshwater studies and used δ2H, δ13C and δ15N to compare their effectiveness in tracing allochthonous matter in food webs of two small temperate lakes. Our results showed higher average amounts of Hex in animal tissues (27% in fish and macroinvertebrates, 19% in zooplankton) compared to most plant material (15% in terrestrial plants and 8% in seston/periphyton), with the exception of aquatic vascular plants (23%, referred to as macrophytes). The amount of Hex correlated strongly with sample lipid content (inferred from C:N ratios) in fish and zooplankton samples. Overall, the three isotopes provided good separation of sources (seston, periphyton, macrophytes and allochthonous organic matter), particularly the δ2H followed by δ13C. Aquatic macrophytes revealed unexpectedly high δ2H values, having more elevated δ2H values than terrestrial organic matter with direct implications for estimating consumer allochthony. Organic matter from macrophytes significantly contributed to the food webs in both lakes highlighting the need to include macrophytes as a potential source when using stable isotopes to estimate trophic structures and contributions from allochthonous sources.
    Keywords: Natural Sciences ; Earth And Related Environmental Sciences ; Oceanography, Hydrology And Water Resources ; Naturvetenskap ; Geovetenskap Och Miljövetenskap ; Oceanografi, Hydrologi Och Vattenresurser
    ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Hydrobiologia, 2016, Vol.767(1), pp.207-220
    Description: Lake shores are characterised by a high natural variability, which is increasingly threatened by a multitude of anthropogenic disturbances including morphological alterations to the littoral zone. The European Water Framework Directive (EU WFD) calls for the assessment of lake ecological status by monitoring biological quality elements including benthic macroinvertebrates. To identify cost- and time-efficient sampling strategies for routine lake monitoring, we sampled littoral invertebrates in 32 lakes located in different geographical regions in Europe. We compared the efficiency of two sampling methodologies, defined as habitat-specific and pooled composite sampling protocols. Benthic samples were collected from unmodified and morphologically altered shorelines. Variability within macroinvertebrate communities did not differ significantly between sampling protocols across alteration types, lake types and geographical regions. Community composition showed no significant differences between field composite samples and artificially generated composite samples, and correlation coefficients between macroinvertebrate metrics calculated with both methods and a predefined morphological stressor index were similar. We conclude that proportional composite sampling represents a time- and cost-efficient method for routine lake monitoring as requested under the EU WFD, and may be applied across various European geographical regions.
    Keywords: Morphological alteration ; Macroinvertebrates ; Lake monitoring ; Method comparison ; Littoral zone ; EU Water Framework Directive
    ISSN: 0018-8158
    E-ISSN: 1573-5117
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Ecology, 2013, Vol.95(6), pp.1496-1505
    Description: Lake ecosystems are strongly linked to their terrestrial surroundings by material and energy fluxes across ecosystem boundaries. However, the contribution of terrestrial particulate organic carbon (tPOC) from annual leaf fall to lake food webs has not yet been adequately traced and quantified. In this...
    Keywords: Natural Sciences ; Naturvetenskap
    ISSN: 0012-9658
    E-ISSN: 19399170
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Freshwater Biology, June 2007, Vol.52(6), pp.1022-1032
    Description: 1. Nutrient inputs from urban and agricultural land use often result in shifts in species composition of pelagic and profundal invertebrate communities. Here, we test if nutrient enrichment affects the composition of eulittoral macroinvertebrate communities, and, if so, if macroinvertebrate communities of five different habitat types reflect differences in trophic state. 2. Macroinvertebrate community composition of 36 lakes was significantly correlated with total phosphorus (TP) concentration, the proportion of coarse woody debris (CWD) and root habitats and the proportion of grassland. 3. However, macroinvertebrate communities of five major habitat types from eight lakes were more dissimilar among habitats than among trophic states. Community composition of reed and stone habitats was significantly correlated with wind exposure but not TP concentration, while macroinvertebrate composition of sand habitats was related to TP concentration and coarse sediments. In CWD and root habitats, both TP concentration and a predominance of invasive species covaried, which made it difficult to relate the observed compositional differences to either trophic state or to the effects of competition between native and invasive species. 4. Trophic state influenced the composition of eulittoral macroinvertebrate communities but to a lesser extent than has been previously reported for profundal habitats. Moreover, the effects of trophic state were nested within habitat type and were partially superseded by biotic interactions and small‐scaled habitat complexity. Although eulittoral macroinvertebrate communities were not strong indicators of the trophic state of lowland lakes, they may be used to assess other anthropogenic impacts on lakeshores.
    Keywords: Eutrophication ; Habitat ; Invasive Species ; Lakeshore ; Land Use
    ISSN: 0046-5070
    E-ISSN: 1365-2427
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Hydrobiologia, 2015, Vol.749(1), pp.31-42
    Description: Food-web effects of winterkill are difficult to predict as the enhanced mortality of planktivorous fish may be counterbalanced by an even higher mortality of piscivores. We hypothesised that a winterkill in a clear and a turbid shallow lake would equalise their fish community composition, but seasonal plankton successions would differ between lakes. After a partial winterkill, we observed a reduction of fish biomass by 16 and 43% in a clear-water and a turbid small temperate lake, respectively. Fish biomass and piscivore shares (5% of fish biomass) were similar in both lakes after this winterkill, but young-of-the-year (YOY) abundances were higher in the turbid lake. Top-down control by crustaceans was only partly responsible for low phytoplankton biomass at the end of May following the winterkill in both lakes. Summer phytoplankton biomass remained low in the clear-water lake despite high abundances of YOY fish (mainly roach). In contrast, the crustacean biomass of the turbid lake was reduced in summer by a high YOY abundance (sunbleak and roach), leading to a strong increase in phytoplankton biomass. The YOY abundance of fish in shallow eutrophic lakes may thus be more important for their summer phytoplankton development after winterkill than the relative abundance of piscivores.
    Keywords: Anoxia ; Fish ; Regime shifts ; Roach ; Shallow lakes ; Submerged macrophytes
    ISSN: 0018-8158
    E-ISSN: 1573-5117
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Applied Ecology, December 2007, Vol.44(6), pp.1138-1144
    Description: 1 The shores of many lakes have been substantially altered by human developments such as erosion control structures or recreational beaches. Such alterations are likely to increase in the future, yet almost nothing is known about their impacts on the littoral macroinvertebrate community. 2 Macroinvertebrates were studied in seven German lowland lakes exhibiting natural shorelines (reference), retaining walls, ripraps and recreational beaches to examine impacts on the eulittoral (0–0·2 m water depth) and infralittoral (0·2–1·2 m water depth) communities associated with the three types of shoreline development. 3 Among sites, eulittoral species richness and abundance of Coleoptera, Gastropoda, Trichoptera, shredders and xylophagous species were lowest on beaches and retaining walls but ripraps did not differ significantly from natural shorelines. Retaining walls and ripraps had no significant impact on the infralittoral macroinvertebrate community. Conversely, beaches had significantly lower infralittoral species richness and abundance of Ephemeroptera, Trichoptera and shredders than natural shorelines. Furthermore, species richness was correlated positively with habitat heterogeneity expressed as number of habitat types. 4 Among lakes, whole‐lake littoral macroinvertebrate density increased with increasing proportion of developed shorelines due to increasing abundances of Chironomidae. The remaining macroinvertebrate major groups decreased with increasing proportion of shoreline development. 5 Synthesis and applications. The biological impacts of shoreline development in lowland lakes depend upon the extent to which structural complexity and heterogeneity of littoral habitats are reduced. Hence, we recommend that management programmes focus upon the conservation of littoral habitat complexity and habitat heterogeneity. The biological effects of shoreline development may be assessed efficiently by combining an assessment of the morphological status of lakeshores and information on macroinvertebrate indicator species with a defined response to the loss of their preferred habitats.
    Keywords: Biodiversity ; Coarse Woody Debris ; Habitat Complexity ; Lake Management ; Macrophytes ; Recreational Beaches ; Retaining Walls ; Riparian Clearcutting ; Ripraps
    ISSN: 0021-8901
    E-ISSN: 1365-2664
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Fundamental and Applied Limnology / Archiv für Hydrobiologie, June 2015, Vol.186(4), pp.353-369
    Description: Hydromorphological alterations of lake shores constitute an important pressure on Central European lakes. The local ecological effects of such alterations can be assessed by multimetric assessment methods based on eulittoral macroinvertebrate communities. However, such tools so far only enable a local assessment even if the European Union Water Framework (EU WFD) requires an assessment at whole-lake level. Since due to time and financial constraints it is not feasible to perform small-scale macroinvertebrate assessments over the whole length of the lake shore, the site-specific ecological assessment result needs to be extrapolated. In this study, we analyse the use of a physical habitat survey method including both ground surveys and aerial photo analysis (HML = HydroMorphology of Lakes survey protocol) to enable an extrapolation from local to whole lake ecological assessment. For that purpose, we correlated individual macroinvertebrate metrics as well as results of a multimetric macroinvertebrate-based index (I) with the areal cover of surrounding natural shore elements, (II) with the hydromorphological impact within an encircling rectangle around the macroinvertebrate sampling site, and (III) with the hydromorphological impact in the adjacent epi-, eu- and sublittoral subsegments. Building up on this, an ecological whole lake assessment was achieved by averaging multimetric index scores calculated for each subsegement based on a regression equation between the multimetric index and the hydromorphological impacts in the three subsegments. This whole lake assessment approach can most likely be applied to geographical regions outside Central Europe and lake types not analysed here (fluvial lowland lakes, prealpine/alpine lakes), but more studies are necessary to verify this. Eventually, the extrapolation presented here may complement existing lake assessments under the EU WFD solely focusing on water quality so far.
    Keywords: Physical Habitat Survey ; Eu Water Framework Directive ; Hydromorphology Of Lakes Protocol (Hml) ; Hydromorphology ; Whole Lake Assessment ; Lakes ; Macroinvertebrates
    ISSN: 1863-9135
    E-ISSN: 23637110
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages