Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mesenchymal Stem Cells
Type of Medium
Language
Year
  • 1
    Language: English
    In: PLoS ONE, 2012, Vol.7(5), p.e37839
    Description: The regenerative potential declines upon aging. This might be due to cell-intrinsic changes in stem and progenitor cells or to influences by the microenvironment. Mesenchymal stem cells (MSC) raise high hopes in regenerative medicine. They are usually culture expanded in media with fetal calf serum (FCS) or other serum supplements such as human platelet lysate (HPL). In this study, we have analyzed the impact of HPL-donor age on culture expansion. 31 single donor derived HPLs (25 to 57 years old) were simultaneously compared for culture of MSC. Proliferation of MSC did not reveal a clear association with platelet counts of HPL donors or growth factors concentrations (PDGF-AB, TGF-β1, bFGF, or IGF-1), but it was significantly higher with HPLs from younger donors (〈35 years) as compared to older donors (〉45 years). Furthermore, HPLs from older donors increased activity of senescence-associated beta-galactosidase (SA-βgal). HPL-donor age did not affect the fibroblastoid colony-forming unit (CFU-f) frequency, immunophenotype or induction of adipogenic differentiation, whereas osteogenic differentiation was significantly lower with HPLs from older donors. Concentrations of various growth factors (PDGF-AB, TGF-β1, bFGF, IGF-1) or hormones (estradiol, parathormone, leptin, 1,25 vitamin D3) were not associated with HPL-donor age or MSC growth. Taken together, our data support the notion that aging is associated with systemic feedback mechanisms acting on stem and progenitor cells, and this is also relevant for serum supplements in cell culture: HPLs derived from younger donors facilitate enhanced expansion and more pronounced osteogenic differentiation.
    Keywords: Research Article ; Biology ; Medicine ; Biotechnology ; Physiology ; Hematology ; Developmental Biology
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: PLoS ONE, 2011, Vol.6(2), p.e16679
    Description: Epigenetic modifications of cytosine residues in the DNA play a critical role for cellular differentiation and potentially also for aging. In mesenchymal stromal cells (MSC) from human bone marrow we have previously demonstrated age-associated methylation changes at specific CpG-sites of developmental genes. In continuation of this work, we have now isolated human dermal fibroblasts from young (〈23 years) and elderly donors (〉60 years) for comparison of their DNA methylation profiles using the Infinium HumanMethylation27 assay. In contrast to MSC, fibroblasts could not be induced towards adipogenic, osteogenic and chondrogenic lineage and this is reflected by highly significant differences between the two cell types: 766 CpG sites were hyper-methylated and 752 CpG sites were hypo-methylated in fibroblasts in comparison to MSC. Strikingly, global DNA methylation profiles of fibroblasts from the same dermal region clustered closely together indicating that fibroblasts maintain positional memory even after in vitro culture. 75 CpG sites were more than 15% differentially methylated in fibroblasts upon aging. Very high hyper-methylation was observed in the aged group within the INK4A/ARF/INK4b locus and this was validated by pyrosequencing. Age-associated DNA methylation changes were related in fibroblasts and MSC but they were often regulated in opposite directions between the two cell types. In contrast, long-term culture associated changes were very consistent in fibroblasts and MSC. Epigenetic modifications at specific CpG sites support the notion that aging represents a coordinated developmental mechanism that seems to be regulated in a cell type specific manner.
    Keywords: Research Article ; Biology ; Genetics And Genomics ; Public Health And Epidemiology ; Molecular Biology ; Cell Biology ; Developmental Biology
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: PLOS ONE, 2014, Vol.9(4), pp.urn:issn:1932-6203
    Description: Several applications in tissue engineering require transplantation of cells embedded in appropriate biomaterial scaffolds. Such structures may consist of 3D non-woven fibrous materials whereas little is known about the impact of mesh size, pore architecture and fibre morphology on cellular behavior. In this study, we have developed polyvinylidene fluoride (PVDF) non-woven scaffolds with round, trilobal, or snowflake fibre cross section and different fibre crimp patterns (10, 16, or 28 needles per inch). Human mesenchymal stromal cells (MSCs) from adipose tissue were seeded in parallel on these scaffolds and their growth was compared. Initial cell adhesion during the seeding procedure was higher on non-wovens with round fibres than on those with snowflake or trilobal cross sections. All PVDF non-woven fabrics facilitated cell growth over a time course of 15 days. Interestingly, proliferation was significantly higher on non-wovens with round or trilobal fibres as compared to those with snowflake profile. Furthermore, proliferation increased in a wider, less dense network. Scanning electron microscopy (SEM) revealed that the MSCs aligned along the fibres and formed cellular layers spanning over the pores. 3D PVDF non-woven scaffolds support growth of MSCs, however fibre morphology and mesh size are relevant: proliferation is enhanced by round fibre cross sections and in rather wide-meshed scaffolds.
    Keywords: Tissue Engineering – Analysis ; Adipose Tissue – Health Aspects;
    ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: PLOS ONE, 2013, Vol.8(10), pp.urn:issn:1932-6203
    Description: Transforming growth factor-beta 1 (TGF-[beta]1) stimulates a broad range of effects which are cell type dependent, and it has been suggested to induce cellular senescence. On the other hand, long-term culture of multipotent mesenchymal stromal cells (MSCs) has a major impact on their cellular physiology and therefore it is well conceivable that the molecular events triggered by TGF-[beta]1 differ considerably in cells of early and late passages. In this study, we analyzed the effect of TGF-[beta]1 on and during replicative senescence of MSCs. Stimulation with TGF-[beta]1 enhanced proliferation, induced a network like growth pattern and impaired adipogenic and osteogenic differentiation. TGF-[beta]1 did not induce premature senescence. However, due to increased proliferation rates the cells reached replicative senescence earlier than untreated controls. This was also evident, when we analyzed senescence-associated DNA-methylation changes. Gene expression profiles of MSCs differed considerably at relatively early (P 3 - 5) and later passages (P 10). Nonetheless, relative gene expression differences provoked by TGF-[beta]1 at individual time points or in a time course dependent manner (stimulation for 0, 1, 4 and 12 h) were very similar in MSCs of early and late passage. These results support the notion that TGF-[beta]1 has major impact on MSC function, but it does not induce senescence and has similar molecular effects during culture expansion.
    Keywords: Methylation -- Analysis ; Bone Morphogenetic Proteins -- Analysis ; Stem Cells -- Analysis ; Genes -- Analysis ; Transforming Growth Factors -- Analysis ; Gene Expression -- Analysis;
    ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Biomaterials, August 2015, Vol.61, pp.316-326
    Description: Surface topography impacts on cell growth and differentiation, but it is not trivial to generate defined surface structures and to assess the relevance of specific topographic parameters. In this study, we have systematically compared differentiation of mesenchymal stem cells (MSCs) on a variety of groove/ridge structures. Micro- and nano-patterns were generated in polyimide using reactive ion etching or multi beam laser interference, respectively. These structures affected cell spreading and orientation of human MSCs, which was also reflected in focal adhesions morphology and size. Time-lapse demonstrated directed migration parallel to the nano-patterns. Overall, surface patterns clearly enhanced differentiation of MSCs towards specific lineages: 15 μm ridges increased adipogenic differentiation whereas 2 μm ridges enhanced osteogenic differentiation. Notably, nano-patterns with a periodicity of 650 nm increased differentiation towards both osteogenic and adipogenic lineages. However, in absence of differentiation media surface structures did neither induce differentiation, nor lineage-specific gene expression changes. Furthermore, nanostructures did not affect the YAP/TAZ complex, which is activated by substrate stiffness. Our results provide further insight into how structuring of tailored biomaterials and implant interfaces – e.g. by multi beam laser interference in sub-micrometer scale – do not induce differentiation of MSCs , but support their directed differentiation.
    Keywords: Mesenchymal Stem Cells ; Microstructure ; Nanotopography ; Laser Ablation ; Gene Expression ; Osteogenesis ; Medicine ; Engineering
    ISSN: 0142-9612
    E-ISSN: 1878-5905
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Biomaterials, August 2014, Vol.35(24), pp.6351-6358
    Description: Matrix elasticity guides differentiation of mesenchymal stem cells (MSCs) but it is unclear if these effects are only transient – while the cells reside on the substrate – or if they reflect persistent lineage commitment. In this study, MSCs were continuously culture-expanded in parallel either on tissue culture plastic (TCP) or on polydimethylsiloxane (PDMS) gels of different elasticity to compare impact on replicative senescence, differentiation, gene expression, and DNA methylation (DNAm) profiles. The maximal number of cumulative population doublings was not affected by matrix elasticity. Differentiation towards adipogenic and osteogenic lineage was increased on soft and rigid biomaterials, respectively – but this propensity was no more evident if cells were transferred to TCP. Global gene expression profiles and DNAm profiles revealed relatively few differences in MSCs cultured on soft or rigid matrices. Furthermore, only moderate DNAm changes were observed upon culture on very soft hydrogels of human platelet lysate. Our results support the notion that matrix elasticity influences cellular behavior while the cells reside on the substrate, but it does not have major impact on cell-intrinsic lineage determination, replicative senescence or DNAm patterns.
    Keywords: Mesenchymal Stem Cells ; Elasticity ; Long-Term Culture ; Platelet Lysate ; DNA-Methylation ; Epigenetic ; Medicine ; Engineering
    ISSN: 0142-9612
    E-ISSN: 1878-5905
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Nucleic Acids Research, 2016, Vol. 44(22), pp.10631-10643
    Description: There is a growing perception that long non-coding RNAs (lncRNAs) modulate cellular function. In this study, we analyzed the role of the lncRNA HOTAIR in mesenchymal stem cells (MSCs) with particular focus on senescence-associated changes in gene expression and DNA-methylation (DNAm). HOTAIR binding sites were enriched at genomic regions that become hypermethylated with increasing cell culture passage. Overexpression and knockdown of HOTAIR inhibited or stimulated adipogenic differentiation of MSCs, respectively. Modification of HOTAIR expression evoked only very moderate effects on gene expression, particularly of polycomb group target genes. Furthermore, overexpression and knockdown of HOTAIR resulted in DNAm changes at HOTAIR binding sites. Five potential triple helix forming domains were predicted within the HOTAIR sequence based on reverse Hoogsteen hydrogen bonds. Notably, the predicted triple helix target sites for these HOTAIR domains were also enriched in differentially expressed genes and close to DNAm changes upon modulation of HOTAIR . Electrophoretic mobility shift assays provided further evidence that HOTAIR domains form RNA–DNA–DNA triplexes with predicted target sites. Our results demonstrate that HOTAIR impacts on differentiation of MSCs and that it is associated with senescence-associated DNAm. Targeting of epigenetic modifiers to relevant loci in the genome may involve triple helix formation with HOTAIR .
    Keywords: Gene Regulation, Chromatin And Epigenetics;
    ISSN: 0305-1048
    E-ISSN: 1362-4962
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Cytotherapy, April 2012, Vol.14(4), pp.401-411
    Description: Mesenchymal stromal cells (MSC) are heterogeneous and only a subset possesses multipotent differentiation potential. It has been proven that long-term culture has functional implications for MSC. However, little is known how the composition of subpopulation changes during culture expansion. We addressed the heterogeneity of MSC using limiting-dilution assays at subsequent passages. In addition, we used a cellular automaton model to simulate population dynamics under the assumption of mixed numbers of remaining cell divisions until replicative senescence. The composition of cells with adipogenic or osteogenic differentiation potential during expansion was also determined at subsequent passages. Not every cell was capable of colony formation upon passaging. Notably, the number of fibroblastoid colony-forming units (CFU-f) decreased continuously, with a rapid decay within early passages. Therefore the CFU-f frequency might be used as an indicator of the population doublings remaining before entering the senescent state. Predictions of the cellular automaton model suited the experimental data best if most cells were already close to their replicative limit by the time of culture initiation. Analysis of differentiated clones revealed that subsets with very high levels of adipogenic or osteogenic differentiation capacity were only observed at early passages. These data support the notion of heterogeneity in MSC, and also with regard to replicative senescence. The composition of subpopulations changes during culture expansion and clonogenic subsets, especially those with the highest differentiation capacity, decrease already at early passages.
    Keywords: Cellular Aging ; Cellular Automaton ; Colony-Forming Units ; Computational Model ; Limiting Dilution ; Long-Term Culture ; Mesenchymal Stromal Cells ; Senescence ; Pharmacy, Therapeutics, & Pharmacology
    ISSN: 1465-3249
    E-ISSN: 1477-2566
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Aging Cell, April 2012, Vol.11(2), pp.366-369
    Description: Replicative senescence has fundamental implications on cell morphology, proliferation, and differentiation potential. Here, we describe a simple method to track long‐term culture based on continuous DNA‐methylation changes at six specific CpG sites. This epigenetic senescence signature can be used as biomarker for various cell types to predict the state of cellular senescence with regard to the number of passages, population doublings, or days of culture.
    Keywords: Cellular Senescence ; Epigenetic ; Dna‐Methylation ; Mesenchymal Stem Cells ; Fibroblast
    ISSN: 1474-9718
    E-ISSN: 1474-9726
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Stem Cell Reports, 09 September 2014, Vol.3(3), pp.414-422
    Description: Standardization of mesenchymal stromal cells (MSCs) remains a major obstacle in regenerative medicine. Starting material and culture expansion affect cell preparations and render comparison between studies difficult. In contrast, induced pluripotent stem cells (iPSCs) assimilate toward a ground state and may therefore give rise to more standardized cell preparations. We reprogrammed MSCs into iPSCs, which were subsequently redifferentiated toward MSCs. These iPS-MSCs revealed similar morphology, immunophenotype, in vitro differentiation potential, and gene expression profiles as primary MSCs. However, iPS-MSCs were impaired in suppressing T cell proliferation. DNA methylation (DNAm) profiles of iPSCs maintained donor-specific characteristics, whereas tissue-specific, senescence-associated, and age-related DNAm patterns were erased during reprogramming. iPS-MSCs reacquired senescence-associated DNAm during culture expansion, but they remained rejuvenated with regard to age-related DNAm. Overall, iPS-MSCs are similar to MSCs, but they reveal incomplete reacquisition of immunomodulatory function and MSC-specific DNAm patterns—particularly of DNAm patterns associated with tissue type and aging. Wagner and colleagues redifferentiated MSC-derived iPSCs toward MSCs. These iPS-MSCs reveal similar morphology, immunophenotype, and in vitro differentiation potential as primary MSCs, but they were impaired in suppressing T cell proliferation. Furthermore, there are marked differences in DNA methylation profiles that can, at least partially, be attributed to persistent reset of tissue-specific and age-related DNA methylation changes.
    Keywords: Biology
    ISSN: 2213-6711
    E-ISSN: 2213-6711
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages