Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Metals
Type of Medium
Language
Year
  • 1
    Language: English
    In: Geochimica et Cosmochimica Acta, 2011, Vol.75(2), pp.337-351
    Description: We have compiled time-series concentration data for the biological reduction of manganese(III/IV) published between 1985 and 2004 and fit these data with a simple hyperbolic rate expression or, when appropriate, one of its limiting forms. The compiled data and rate constants are available in . The zero- and first-order rate constants appear to follow a log–normal distribution that could be used, for example, in predictive modeling of Mn-oxide reduction in a reactive transport scenario. We have also included details of the experimental procedures used to generate each time-series data-set in our compilation. These meta-data—mostly pertaining to the type and concentration of micro-organism, electron donor, and electron acceptor—enable us to examine the rate data for trends. We have computed a number of rudimentary, mono-variate statistics on the compiled data with the hope of stimulating both more detailed statistical analyses of the data and new experiments to fill gaps in the existing data-set. We have also analyzed the data with parametric models based on the log–normal distribution and rate equations that are hyperbolic in the concentration of cells and Mn available for reduction. This parametric analysis allows us to provide best estimates of zero- and first-order rate constants both ignoring and accounting for the meta-data.
    Keywords: Geology
    ISSN: 0016-7037
    E-ISSN: 1872-9533
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Geochimica et Cosmochimica Acta, 15 December 2012, Vol.99, pp.159-178
    Description: This paper demonstrates a method for systematic analysis of published mineral dissolution rate data using forsterite dissolution as an example. The steps of the method are: (1) identify the data sources, (2) select the data, (3) tabulate the data, (4) analyze the data to produce a model, and (5) report the results. This method allows for a combination of of data, based on expert knowledge of theoretical expectations and experimental pitfalls, and of the data using statistical methods. Application of this method to all currently available forsterite dissolution rates (0 〈 pH 〈 14, and 0 〈 〈 150 °C) normalized to geometric surface area produced the following rate equations: For pH 〈 5.6 and 0° 〈 〈 150 °C, based on 519 data For pH 〉 5.6 and 0° 〈 〈 150 °C, based on 125 data The values show that ∼10% of the variance in is not explained by variation in 1/ and pH. Although the experimental error for rate measurements should be ± ∼30%, the observed error associated with the log values is ∼0.5 log units (±300% relative error). The unexplained variance and the large error associated with the reported rates likely arises from the assumption that the rates are directly proportional to the mineral surface area (geometric or BET) when the rate is actually controlled by the concentration and relative reactivity of surface sites, which may be a function of duration of reaction. Related to these surface area terms are other likely sources of error that include composition and preparation of mineral starting material. Similar rate equations were produced from BET surface area normalized rates. Comparison of rate models based on geometric and BET normalized rates offers no support for choosing one normalization method over the other. However, practical considerations support the use of geometric surface area normalization. Comparison of Mg and Si release rates showed that they produced statistically indistinguishable dissolution rates because dissolution was stoichiometric in the experiments over the entire pH range even though the surface concentrations of Mg and Si are known to change with pH. Comparison of rates from experiments with added carbonate, either from CO partial pressures greater than atmospheric or added carbonate salts, showed that the existing data set is not sufficient to quantify any effect of dissolved carbonate species on forsterite dissolution rates.
    Keywords: Geology
    ISSN: 0016-7037
    E-ISSN: 1872-9533
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Earth and Planetary Science Letters, 15 February 2017, Vol.460, pp.29-40
    Description: O and CO , the two essential reactants in weathering along with water and minerals, are important in deep regolith development because they diffuse to weathering fronts at depth. We monitored the dynamics of these gas concentrations in the hand-augerable zone on three ridgetops—one on granite and two on diabase—in Virginia (VA) and Pennsylvania (PA), U.S.A. and related the gas chemistry to regolith development. The VA granite and the PA diabase protoliths were more deeply weathered than the VA diabase. We attribute this to high protolith fracture density. The pO and pCO measurements of these more fractured sites displayed the characteristics of aerobic respiration year round. In contrast, the relation of pO versus pCO on the more massive VA diabase is consistent with seasonal changes in the dominant electron acceptor from O to Fe(III), likely regulated by the expansion/contraction of nontronite in the soil BC horizon. These observations suggest that the fracture density is a first order control on deep regolith gas chemistry. However, fractures can be present in protolith but also can be caused by oxidation of ferrous minerals. We propose that subsurface pO and weathering-induced fracturing can create positive feedbacks in some lithologies that cause regolith to thicken while nonetheless maintaining aerobic respiration at depth. In contrast, in the absence of weathering-induced fracturing and depletion of pO , a negative feedback that may be modulated by soil micro-biota ultimately results in thin regolith. These feedbacks may have been important in weathering systems over much of earth's history.
    Keywords: Soil Po2 and Pco2 ; Mafic Vs. Felsic Bedrocks ; Weathering-Induced Fracturing ; Fe Redox Cycling ; Regolith Development ; Geology ; Physics
    ISSN: 0012-821X
    E-ISSN: 1385-013X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Earth and Planetary Science Letters, 2010, Vol.297(1), pp.211-225
    Description: In the Critical Zone where rocks and life interact, bedrock equilibrates to Earth surface conditions, transforming to regolith. The factors that control the rates and mechanisms of formation of regolith, defined here as material that can be augered, are still not fully understood. To quantify regolith formation rates on shale lithology, we measured uranium-series (U-series) isotopes ( U, U, and Th) in three weathering profiles along a planar hillslope at the Susquehanna/Shale Hills Observatory (SSHO) in central Pennsylvania. All regolith samples show significant U-series disequilibrium: ( U/ U) and ( Th/ U) activity ratios range from 0.934 to 1.072 and from 0.903 to 1.096, respectively. These values display depth trends that are consistent with fractionation of U-series isotopes during chemical weathering and element transport, i.e., the relative mobility decreases in the order U 〉 U 〉 Th. The activity ratios observed in the regolith samples are explained by i) loss of U-series isotopes during water–rock interactions and ii) re-deposition of U-series isotopes downslope. Loss of U and Th initiates in the meter-thick zone of “bedrock” that cannot be augered but that nonetheless consists of up to 40% clay/silt/sand inferred to have lost K, Mg, Al, and Fe. Apparent equivalent regolith production rates calculated with these isotopes for these profiles decrease exponentially from 45 m/Myr to 17 m/Myr, with increasing regolith thickness from the ridge top to the valley floor. With increasing distance from the ridge top toward the valley, apparent equivalent regolith residence times increase from 7 kyr to 40 kyr. Given that the SSHO experienced peri-glacial climate ∼ 15 kyr ago and has a catchment-wide averaged erosion rate of ∼ 15 m/Myr as inferred from cosmogenic Be, we conclude that the hillslope retains regolith formed before the peri-glacial period and is not at geomorphologic steady state. Both chemical weathering reactions of clay minerals and translocation of fine particles/colloids are shown to contribute to mass loss of U and Th from the regolith, consistent with major element data at SSHO. This research documents a case study where U-series isotopes are used to constrain the time scales of chemical weathering and regolith production rates. Regolith production rates at the SSHO should be useful as a reference value for future work at other weathering localities.
    Keywords: U-Series Isotopes ; Regolith Formation ; Chemical Weathering ; Erosion ; Critical Zone ; Geology ; Physics
    ISSN: 0012-821X
    E-ISSN: 1385-013X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Geochimica et Cosmochimica Acta, 15 November 2017, Vol.217, pp.421-440
    Description: Shale formations account for 25% of the land surface globally and contribute a large proportion of the natural gas used in the United States. One of the most productive shale-gas formations is the Marcellus, a black shale that is rich in organic matter and pyrite. As a first step toward understanding how Marcellus shale interacts with water in the surface or deep subsurface, we developed a reactive transport model to simulate shale weathering under ambient temperature and pressure conditions, constrained by soil and water chemistry data. The simulation was carried out for 10,000 years since deglaciation, assuming bedrock weathering and soil genesis began after the last glacial maximum. Results indicate weathering was initiated by pyrite dissolution for the first 1000 years, leading to low pH and enhanced dissolution of chlorite and precipitation of iron hydroxides. After pyrite depletion, chlorite dissolved slowly, primarily facilitated by the presence of CO and organic acids, forming vermiculite as a secondary mineral. A sensitivity analysis indicated that the most important controls on weathering include the presence of reactive gases (CO and O ), specific surface area, and flow velocity of infiltrating meteoric water. The soil chemistry and mineralogy data could not be reproduced without including the reactive gases. For example, pyrite remained in the soil even after 10,000 years if O was not continuously present in the soil column; likewise, chlorite remained abundant and porosity remained small if CO was not present in the soil gas. The field observations were only simulated successfully when the modeled specific surface areas of the reactive minerals were 1–3 orders of magnitude smaller than surface area values measured for powdered minerals. Small surface areas could be consistent with the lack of accessibility of some fluids to mineral surfaces due to surface coatings. In addition, some mineral surface is likely interacting only with equilibrated pore fluids. An increase in the water infiltration rate enhanced weathering by removing dissolution products and maintaining far-from-equilibrium conditions. We conclude from these observations that availability of reactive surface area and transport of H O and gases are the most important factors affecting rates of Marcellus shale weathering of the in the shallow subsurface. This weathering study documents the utility of reactive transport modeling for complex subsurface processes. Such modelling could be extended to understand interactions between injected fluids and Marcellus shale gas reservoirs at higher temperature, pressure, and salinity conditions.
    Keywords: Chemical Weathering ; Reactive Transport Modeling ; Critical Zone ; Marcellus Shale ; Geology
    ISSN: 0016-7037
    E-ISSN: 1872-9533
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Science of the Total Environment, 15 May 2015, Vol.515-516, pp.49-59
    Description: Atmospheric emissions of metals from anthropogenic activities have led to deposition and contamination of soils worldwide. We quantified addition of manganese (Mn) to soils around the largest emitter of Mn in the United States (U.S.) using chemical analyses and atmospheric dispersion modeling (Second-Order Closure Integrated Puff (SCIPUFF)). Concentrations of soil-surface Mn were enriched by 9-fold relative to that of the parent material within 1 km of the facility. Elevated concentrations of Mn and chromium (Cr), another potentially toxic element that was emitted, document contamination only within 1 m of the soil surface. Total mass of Mn added per unit land area integrated over 1 m, , equals ~ 80 mg Mn cm near the facility. Values of remained above background up to tens of kilometers from the source. Air concentrations of Mn particles of 7.5-micron diameter simulated with SCIPUFF using available data for the emission rate and local meteorological conditions for 2006 were consistent with measured air concentrations. However, the Mn deposition calculated for 2006 with SCIPUFF yielded a cumulative value over the lifetime of the refinery (60 years) that is a factor of 15 lower than the Mn observed to have been added to the soils. This discrepancy can be easily explained if Mn deposition rates before 1988 were more than an order of magnitude greater than today. Such higher emissions are probable, given the changes in metal production with time and the installation of emission controls after the Clean Air Act (1970). This work shows that atmospheric dispersion models can be used with soil profiles to understand the changes in metal emissions over decadal timescales. In addition, the calculations are consistent with the Clean Air Act accounting for a 15-fold decrease in the Mn deposition to soils around the refinery per metric ton of Mn alloy produced.
    Keywords: Scipuff ; Metal Deposition ; Industrial Emissions ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: 2014, Vol.9(8), p.e104336
    Description: When Geobacter sulfurreducens utilizes an electrode as its electron acceptor, cells embed themselves in a conductive biofilm tens of microns thick. While environmental conditions such as pH or redox potential have been shown to change close to the electrode, less is known about the response of G. sulfurreducens to growth in this biofilm environment. To investigate whether respiratory protein abundance varies with distance from the electrode, antibodies against an outer membrane multiheme cytochrome (OmcB) and cytoplasmic acetate kinase (AckA) were used to determine protein localization in slices spanning ∼25 µm-thick G. sulfurreducens biofilms growing on polished electrodes poised at +0.24 V (vs. Standard Hydrogen Electrode). Slices were immunogold labeled post-fixing, imaged via transmission electron microscopy, and digitally reassembled to create continuous images allowing subcellular location and abundance per cell to be quantified across an entire biofilm. OmcB was predominantly localized on cell membranes, and 3.6-fold more OmcB was detected on cells 10–20 µm distant from the electrode surface compared to inner layers (0–10 µm). In contrast, acetate kinase remained constant throughout the biofilm, and was always associated with the cell interior. This method for detecting proteins in intact conductive biofilms supports a model where the utilization of redox proteins changes with depth.
    Keywords: Research Article ; Biology And Life Sciences ; Engineering And Technology ; Physical Sciences ; Research And Analysis Methods
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Geochimica et Cosmochimica Acta, 15 December 2016, Vol.195, pp.29-67
    Description: Inside soil and saprolite, rock fragments can form weathering clasts (alteration rinds surrounding an unweathered core) and these weathering rinds provide an excellent field system for investigating the initiation of weathering and long term weathering rates. Recently, uranium-series (U-series) disequilibria have shown great potential for determining rind formation rates and quantifying factors controlling weathering advance rates in weathering rinds. To further investigate whether the U-series isotope technique can document differences in long term weathering rates as a function of precipitation, we conducted a new weathering rind study on tropical volcanic Basse-Terre Island in the Lesser Antilles Archipelago. In this study, for the first time we characterized weathering reactions and quantified weathering advance rates in multiple weathering rinds across a steep precipitation gradient. Electron microprobe (EMP) point measurements, bulk major element contents, and U-series isotope compositions were determined in two weathering clasts from the Deshaies watershed with mean annual precipitation (MAP) = 1800 mm and temperature (MAT) = 23 °C. On these clasts, five core-rind transects were measured for locations with different curvature (high, medium, and low) of the rind-core boundary. Results reveal that during rind formation the fraction of elemental loss decreases in the order: Ca ≈ Na 〉 K ≈ Mg 〉 Si ≈ Al 〉 Zr ≈ Ti ≈ Fe. Such observations are consistent with the sequence of reactions after the initiation of weathering: specifically, glass matrix and primary minerals (plagioclase, pyroxene) weather to produce Fe oxyhydroxides, gibbsite and minor kaolinite. Uranium shows addition profiles in the rind due to the infiltration of U-containing soil pore water into the rind as dissolved U phases. U is then incorporated into the rind as Fe-Al oxides precipitate. Such processes lead to significant U-series isotope disequilibria in the rinds. This is the first time that multiple weathering clasts from the same watershed were analyzed for U-series isotope disequlibrian and show consistent results. The U-series disequilibria allowed for the determination of rind formation ages and weathering advance rates with a U-series mass balance model. The weathering advance rates generally decreased with decreasing curvature: ∼0.17 ± 0.10 mm/kyr for high curvature, ∼0.12 ± 0.05 mm/kyr for medium curvature, and ∼0.11 ± 0.04, 0.08 ± 0.03, 0.06 ± 0.03 mm/kyr for low curvature locations. The observed positive correlation between the curvature and the weathering rates is well supported by predictions of weathering models, i.e., that the curvature of the rind-core boundary controls the porosity creation and weathering advance rates at the clast scale. At the watershed scale, the new weathering advance rates derived on the low curvature transects for the relatively dry Deshaies watershed (average rate of 0.08 mm/kyr; MAP = 1800 mm and MAT = 23 °C) are ∼60% slower than the rind formation rates previously determined in the much wetter Bras David watershed (∼0.18 mm/kyr, low curvature transect; MAP = 3400 mm and MAT = 23 °C) also on Basse-Terre Island. Thus, a doubling of MAP roughly correlates with a doubling of weathering advance rate. The new rind study highlights the effect of precipitation on weathering rates over a time scale of ∼100 kyr. Weathering rinds are thus a suitable system for investigating long-term chemical weathering across environmental gradients, complementing short-term riverine solute fluxes.
    Keywords: U-Series Isotopes ; Weathering Rinds ; Weathering Rates ; Precipitation ; French Guadeloupe ; Geology
    ISSN: 0016-7037
    E-ISSN: 1872-9533
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Geochimica et Cosmochimica Acta, 01 March 2012, Vol.80, pp.92-107
    Description: To quantify rates of rind formation on weathering clasts under tropical and humid climate and to determine factors that control weathering reactions, we analyzed Uranium series isotope compositions and trace element concentrations in a basaltic andesite weathering clast collected from Basse-Terre Island in Guadeloupe. U, Th, and Ti elemental profiles reveal that Th and Ti behave conservatively during rind formation, but that U is added from an external source to the rind. In the rind, weathering reactions include dissolution of primary minerals such as pyroxene, plagioclase, and glass matrix, as well as formation of Fe oxyhydroxides, gibbsite and minor kaolinite. Rare earth element (REE) profiles reveal a significant Eu negative anomaly formed during clast weathering, consistent with plagioclase dissolution. Significant porosity forms in the rind mostly due to plagioclase dissolution. The new porosity is inferred to allow influx of soil water carrying externally derived, dissolved U. Due to this influx, U precipitates along with newly formed clay minerals and oxyhydroxides in the rind. The conservative behavior of Th and the continuous addition of U into the rind adequately explain the observed systematic trends of ( U/ Th) and ( Th/ Th) activity ratios in the rind. Rind formation rates, determined from the measured U-series activity ratios with an open system U addition model, increase by a factor of ∼1.3 (0.18–0.24 mm/kyr) from a low curvature to a high curvature section (0.018–0.12 mm ) of the core–rind boundary, revealing that curvature affects rates of rind formation as expected for diffusion-limited rind formation. U-series geochronometry thus provides the first direct evidence that the curvature of the interface controls the rate of regolith formation at the clast scale. The weathering rates determined at the clast scale can be reconciled with the weathering rates determined at the watershed or soil profile scale if surface roughness equals values of approximately 1300–2200.
    Keywords: Geology
    ISSN: 0016-7037
    E-ISSN: 1872-9533
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Geochimica et Cosmochimica Acta, 15 December 2012, Vol.99, pp.18-38
    Description: During weathering, Fe in primary minerals is solubilized by ligands and/or reduced by bacteria and released into soil porewaters. Such Fe is then removed or reprecipitated in soils. To understand these processes, we analyzed Fe chemistry and isotopic composition in regolith of the Shale Hills watershed, a Critical Zone Observatory in central Pennsylvania overlying iron-rich shale of the Rose Hill Formation. Elemental concentrations were measured in soil from a well-drained catena on a planar hillslope on the south side of the catchment. Based upon X-ray diffraction and bulk elemental data, loss of Fe commences as clay begins to weather ∼15 cm below the depth of auger-refusal. More Fe(III) was present than Fe(II) in all soil samples from the ridge top to the valley floor. Both total and ferrous iron are depleted from the land surface of catena soils relative to the bedrock. Loss of ferrous Fe is attributed mostly to abiotic or biotic oxidation. Loss of Fe is most likely due to transport of micron-sized particles that are not sampled by porous-cup lysimeters, but which are sampled in stream and ground waters. The isotopic compositions (δ Fe, relative to IRMM-014) of bulk Fe and 0.5 N HCl-extracted Fe (operationally designed to remove amorphous Fe (oxyhydr)oxides) range between −0.3‰ and +0.3‰, with Δ Fe values between ∼0.2‰ and 0.4‰. Throughout the soils along the catena, δ Fe signatures of both bulk Fe and HCl-extracted Fe become isotopically lighter as the extent of weathering proceeds. The isotopic trends are attributed to one of two proposed mechanisms. One mechanism involves Fe fractionation during mobilization of Fe from the parent material due to either Fe reduction or ligand-promoted dissolution. The other mechanism involves fractionation during immobilization of Fe (oxyhydr)oxides. If the latter mechanism is true, then shale – which comprises one quarter of continental rocks – could be an important source of isotopically heavy Fe for rivers.
    Keywords: Geology
    ISSN: 0016-7037
    E-ISSN: 1872-9533
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages