Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Meteorology
Type of Medium
Language
Year
  • 1
    Language: English
    In: Tellus A: Dynamic Meteorology and Oceanography, 01 January 2011, Vol.63(2), pp.263-282
    Description: A forward operator for Global Positioning System (GPS) slant total delay (STD) data and its adjoint were implemented into the Mesoscale Model version 5 (MM5) 4DVAR system to investigate its impact on quantitative precipitation forecasting (QPF). An operational forecast system was set up providing...
    Keywords: Meteorology & Climatology
    E-ISSN: 1600-0870
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Quarterly Journal of the Royal Meteorological Society, 2012, Vol.138(667), pp.1652-1667
    Description: The Convective and Orographically-driven Precipitation Study (COPS) carried out in summer 2007 over northeastern France and southwestern Germany provided a fairly comprehensive description of the low-troposphere water-vapour field, thanks in particular to the deployment of two airborne...
    Keywords: Sciences of the Universe ; Earth Sciences ; Meteorology ; Leandre 2 ; Wales ; Arome ; Vera ; Meteorology & Climatology
    ISSN: 0035-9009
    E-ISSN: 1477-870X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Water Resources Research, February 2014, Vol.50(2), pp.1337-1356
    Description: Interactions between the soil, the vegetation, and the atmospheric boundary layer require close attention when predicting water fluxes in the hydrogeosystem, agricultural systems, weather, and climate. However, land‐surface schemes used in large‐scale models continue to show deficiencies in consistently simulating fluxes of water and energy from the subsurface through vegetation layers to the atmosphere. In this study, the multiphysics version of the Noah land‐surface model (Noah‐MP) was used to identify the processes, which are most crucial for a simultaneous simulation of water and heat fluxes between land surface and the lower atmosphere. Comprehensive field data sets of latent and sensible heat fluxes, ground heat flux, soil moisture, and leaf area index from two contrasting field sites in South‐West Germany are used to assess the accuracy of simulations. It is shown that an adequate representation of vegetation‐related processes is the most important control for a consistent simulation of energy and water fluxes in the soil‐plant‐atmosphere system. In particular, using a newly implemented submodule to simulate root growth dynamics has enhanced the performance of Noah‐MP. We conclude that further advances in the representation of leaf area dynamics and root/soil moisture interactions are the most promising starting points for improving the simulation of feedbacks between the subsoil, land surface and atmosphere in fully coupled hydrological and atmospheric models. Selecting different model options strongly influences accuracy of simulations The ensemble size can be reduced by constraining Noah‐MP to different data types Considering dynamics of root growth results in more accurate simulations
    Keywords: Land‐Surface Model ; Structural Uncertainty ; Root Water Uptake ; Latent And Sensible Heat ; Ground Heat Flux ; Soil Moisture
    ISSN: 0043-1397
    E-ISSN: 1944-7973
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Meteorologische Zeitschrift, 01 December 2008, Vol.17(6), pp.867-885
    Description: This article describes the development of tools for routine 4-dimensional variational data assimilation of Global Positioning System Slant Total Delay (STD) data in the framework of the MM5 system at the Institute of Physics and Meteorology of the University of Hohenheim. The Slant Total Delay...
    Keywords: Meteorology & Climatology
    ISSN: 0941-2948
    E-ISSN: 1610-1227
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Quarterly Journal of the Royal Meteorological Society, 137(S1):3-30, 24 February 2011, Vol.137(S1)
    Description: Within the frame of the international field campaign COPS (Convective and Orographically-induced Precipitation Study), a large suite of state-of-the-art meteorological instrumentation was operated, partially combined for the first time. The COPS field phase was performed from 01 June - 31 August 2007 in a low-mountain area in southwestern Germany/eastern France covering the Vosges Mountains, the Rhine valley and the Black Forest Mountains. The collected data set covers the entire evolution of convective precipitation events in complex terrain from their initiation, to their development and mature phase up to their decay. 18 Intensive Operation Periods (IOPs) with 34 operation days and 8 additional Special Observation Periods (SOPs) were performed providing a comprehensive data set covering different forcing conditions. In this paper an overview of the COPS scientific strategy, the field phase, and its first accomplishments is given. Some highlights of the campaign are illustrated with several measurement examples. It is demonstrated that COPS provided new insight in key processes leading to convection initiation and to the modification of precipitation by orography, in the improvement of QPF by the assimilation of new observations, and in the performance of ensembles of convection permitting models in complex terrain.
    Keywords: Environmental Sciences ; Complex Terrain ; Convection ; Performance ; Atmospheric Precipitations ; Field Tests ; Climate Models ; Meteorology & Climatology ; Environmental Sciences
    ISSN: 0035-9009
    E-ISSN: 1477-870X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages