Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Phycology, August 2009, Vol.45(4), pp.807-811
    Description: Algae of various taxonomic groups are capable of assimilating dissolved organic carbon (DOC) from their environments (mixotrophy). Recently, we reported that, with increasing biomass of mixotrophs, heterotrophic bacteria did not increase. We hypothesized that algal uptake of external DOC may outweigh their release of DOC by exudation (H1). Here, we addressed an alternative hypothesis that algae did not assimilate external DOC but constrained the release of DOC (H2). In chemostat experiments, we cultured the mixotrophic Negoro together with heterotrophic bacteria. As external substrates, we used glucose, which was potentially available for both bacteria and algae, or fructose, which was available only for bacteria. We increased the biomass of algae by the stepwise addition of phosphorus. Bacterial biomass did not increase in experiments using glucose or when fructose was offered, suggesting that mechanisms other than algal mixotrophy (H1) kept concentrations of bacteria low. Measured exudation rates (percent extracellular release, PER) of mixotrophic algae ( W. Krüger) were very low and ranged between 1.0% and 3.5% at low and moderately high phosphorus concentrations. In contrast, an obligately phototrophic alga ( H. Ettl) showed higher exudation rates, particularly under phosphorus limitation (70%). The results support H2. If mixotrophy is considered as a mechanism to recycle organic exudates from near the cell surface, this would explain why algae retained mixotrophic capabilities although they cannot compete with bacteria for external organic carbon.
    Keywords: Algae ; Bacteria ; Chemostat ; Competition ; Doc ; Exudation ; Mixotroph
    ISSN: 0022-3646
    E-ISSN: 1529-8817
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 28 October 2003, Vol.100(22), pp.12776-81
    Description: The majority of organisms can be grouped into those relying solely on photosynthesis (phototrophy) or those relying solely on the assimilation of organic substances (heterotrophy) to meet their requirements for energy and carbon. However, a special life history trait exists in which organisms combine both phototrophy and heterotrophy. Such "mixotrophy" is a widespread phenomenon in aquatic habitats and is observed in many protozoan and metazoan organisms. The strategy requires investment in both photosynthetic and heterotrophic cellular apparatus, and the benefits must outweigh these costs. In accordance with mechanistic resource competition theory, laboratory experiments revealed that pigmented mixotrophs combined light, mineral nutrients, and prey as substitutable resources. Thereby, they reduced prey abundance below the critical food concentration of competing specialist grazers [Rothhaupt, K. O. (1996) Ecology 77, 716-724]. Here, we demonstrate the important consequences of this strategy for an aquatic community. In the illuminated surface strata of a lake, mixotrophs reduced prey abundance steeply. The data suggest that, as a consequence, grazers from higher trophic levels, consuming both the mixotrophs and their prey, could not persist. Thus, the mixotrophs escaped from competition with and losses to higher grazers. Furthermore, the mixotrophs structured prey abundance along the vertical light gradient, creating low densities near the surface and a pronounced maximum of their algal prey at depth. Such deep algal accumulations are typical features of nutrient-poor aquatic habitats, previously explained by resource availability. We hypothesize instead that the mixotrophic grazing strategy is responsible for deep algal accumulations in many aquatic environments.
    Keywords: Food Chain ; Chlamydomonas -- Physiology
    ISSN: 0027-8424
    E-ISSN: 10916490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Limnologica, 2008, Vol.38(3), pp.360-366
    Description: Since amino acids represent an important component of dissolved organic carbon in lakes, we investigated the uptake and consumption of leucine by several phytoplankton species. Firstly, we measured the leucine uptake of 28 phytoplankton species (several cyanobacteria and chlorophytes, one diatom, and one euglenophyte) and the uptake kinetics by a chlorophyte ( ) compared to that of heterotrophic bacteria. Furthermore, we tested whether the algae can decrease the concentration of leucine in the light to lower levels than in darkness (hypothesis 1), and whether algae with high minimum substrate requirements exhibit higher consumption rates at plentiful concentrations compared to algae with high substrate reduction capability but low maximum consumption rate (hypothesis 2). Thirteen species of cyanobacteria and chlorophytes showed leucine uptake. Specific uptake rates by were lower in the light than in the dark and much lower than that of heterotrophic bacteria. In the consumption experiments, several algae consumed leucine with higher rates and to lower residual concentrations in the dark than in the light, but with lower rates and not to lower concentrations than heterotrophic bacteria. Residual concentrations and consumption rates were not related to algal cell volume and chlorophyll content. Consumption rates were negatively related to residual concentrations, i.e. algae with higher consumption rates also depleted leucine to lower concentrations. Although the hypotheses were not supported, several algae were capable of removing leucine to equally low concentrations as bacteria so that algal uptake of amino acids is potentially important in natural waters.
    Keywords: Algae ; Amino Acids ; Bacteria ; Competition ; Cyanobacteria ; Doc ; Leucine ; Mixotrophy ; Oceanography ; Ecology
    ISSN: 0075-9511
    E-ISSN: 1873-5851
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Journal of phycology, 2008, Vol.44(3), pp.616-623
    Description: Dissolved organic carbon (DOC) constitutes the bulk of organic carbon in aquatic environments. The importance of DOC utilization by mixotrophic algae is unclear since heterotrophic bacteria are regarded as more efficient users. We tested the hypothesis that algae decrease the DOC concentration in the light to lower levels than in darkness resulting in competitive exclusion of heterotrophic bacteria according to the mechanistic competition theory. We investigated (a) the uptake kinetics of glucose as a model substrate by two cultured algae and mixed bacteria populations, (b) the competition for glucose between algae and bacteria in chemostats, (c) the effect of discontinuous glucose supply in chemostats, and (d) the minimum glucose concentrations achieved in cultures of algae and bacteria. Bacteria showed higher specific-glucose-uptake rates than algae. In chemostats, algae became extinct in the dark and coexisted in the light where they decreased bacteria to lower densities. Discontinuous glucose supply promoted the algae compared to continuous substrate addition. Several algae consumed glucose to lower concentrations in the dark than in the light and showed lower or equal residual glucose concentrations than bacteria. Residual concentrations were not related to allometric traits (cell volume) and photosynthetic potential (chl content). Overall, the hypothesis was not supported, and mechanisms of competition for DOC obviously differed from those for particulate prey. However, since some algae showed lower or equal residual glucose concentrations than bacteria, algal dark uptake of DOC may be important in deep layers of many waters. ; Includes references ; p. 616-623.
    Keywords: Bacteria ; Algae ; Mixotrophy ; Doc ; Competition
    ISSN: 0022-3646
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Limnologica, 2010, Vol.40(2), pp.161-166
    Description: Acidic mining lakes (pH 〈3) are specific habitats exhibiting particular chemical and biological characteristics. The species richness is low and mixotrophy and omnivory are common features of the plankton food web in such lakes. The plankton community structure of mining lakes of different morphometry and mixing type but similar chemical characteristics (Lake 130, Germany and Lake Langau, Austria) was investigated. The focus was laid on the species composition, the trophic relationship between the phago-mixotrophic flagellate sp. and bacteria and the formation of a deep chlorophyll maximum along a vertical pH-gradient. The shallow wind-exposed Lake 130 exhibited a higher species richness than Lake Langau. This increase in species richness was made up mainly by mero-planktic species, suggesting a strong benthic/littoral – pelagic coupling. Based on the field data from both lakes, a nonlinear, negative relation between bacteria and biomass was found, suggesting that at an biomass below 50 μg C L , the grazing pressure on bacteria is low and with increasing biomass bacteria decline. Furthermore, in Lake Langau, a prominent deep chlorophyll maximum was found with chlorophyll concentrations ca. 50 times higher than in the epilimnion which was build up by the euglenophyte sp. We conclude that lake morphometry, and specific abiotic characteristics such as mixing behaviour influence the community structure in these mining lakes.
    Keywords: Acidic Lake ; Mining Lake ; Plankton ; Mixotrophy ; Rotifers ; Flagellates ; Ochromonas ; Lepocinclis ; Chlamydomonas ; Deep Chlorophyll Maximum ; Oceanography ; Ecology
    ISSN: 0075-9511
    E-ISSN: 1873-5851
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Phycology, June 2008, Vol.44(3), pp.616-623
    Description: Dissolved organic carbon (DOC) constitutes the bulk of organic carbon in aquatic environments. The importance of DOC utilization by mixotrophic algae is unclear since heterotrophic bacteria are regarded as more efficient users. We tested the hypothesis that algae decrease the DOC concentration in the light to lower levels than in darkness resulting in competitive exclusion of heterotrophic bacteria according to the mechanistic competition theory. We investigated (a) the uptake kinetics of glucose as a model substrate by two cultured algae and mixed bacteria populations, (b) the competition for glucose between algae and bacteria in chemostats, (c) the effect of discontinuous glucose supply in chemostats, and (d) the minimum glucose concentrations achieved in cultures of algae and bacteria. Bacteria showed higher specific‐glucose‐uptake rates than algae. In chemostats, algae became extinct in the dark and coexisted in the light where they decreased bacteria to lower densities. Discontinuous glucose supply promoted the algae compared to continuous substrate addition. Several algae consumed glucose to lower concentrations in the dark than in the light and showed lower or equal residual glucose concentrations than bacteria. Residual concentrations were not related to allometric traits (cell volume) and photosynthetic potential (chl content). Overall, the hypothesis was not supported, and mechanisms of competition for DOC obviously differed from those for particulate prey. However, since some algae showed lower or equal residual glucose concentrations than bacteria, algal dark uptake of DOC may be important in deep layers of many waters.
    Keywords: Algae ; Bacteria ; Competition ; Doc ; Mixotrophy
    ISSN: 0022-3646
    E-ISSN: 1529-8817
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages