Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Plant Leaves
Type of Medium
Language
Year
  • 1
    Language: English
    In: Science of the Total Environment, 01 June 2013, Vol.454-455, pp.401-410
    Description: During recent years, increasing incidences of summer droughts – likely driven by climate change – reduced the dilution potential of low-order streams for secondary treated wastewater also in temperate Europe. Despite the potential risks to ecosystem integrity, there is a paucity of knowledge regarding the effects of different wastewater dilution potentials on ecosystem functions. The present study investigated the implications of secondary treated wastewater released into a third-order stream (Queich, southwest Germany) during a season with low dilution potential (summer; ~ 90% wastewater) as compared to a season with high dilution potential (winter; ~ 35% wastewater) in terms of leaf litter decomposition and macroinvertebrate communities. Adverse effects in macroinvertebrate mediated leaf mass loss (~ 65%), gammarids' feeding rate (~ 80%), leaf associated fungal biomass (〉 40%) and shifts in macroinvertebrate community structure were apparent up to 100 and 300 m (partially 500 m) downstream of the wastewater treatment plant effluent during winter and summer, respectively. In addition, a laboratory feeding trial demonstrated the potential of powdered activated carbon to reduce the ecotoxicity of released wastewater. These results urge the development and evaluation of adequate management strategies, e.g. the application of advanced wastewater treatment technologies, to protect the integrity of freshwater ecosystems, which is required by the European Water Framework Directive — also considering decreasing dilution potential of streams as projected by climate change scenarios.
    Keywords: Ecosystem Functions ; Leaf Decomposition ; In Situ ; Micropollutants ; Gammarus ; Powdered Activated Carbon ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Chemosphere, 2011, Vol.85(10), pp.1563-1567
    Description: ► Effects of nTiO and ambient UV-irradiation affect representatives of detrital food webs. ► Accumulation of nTiO at the bottom of the test vessel seems to affect ecotoxicity. ► nTiO and ambient UV-irradiation increases ecotoxicity due to the formation of ROS. Production and use of engineered nanoparticles, such as titanium dioxide nanoparticles (nTiO ), is increasing worldwide, enhancing their probability to enter aquatic environments. However, direct effects of nTiO as well as ecotoxicological consequences due to the interactions of nTiO with environmental factors like ultraviolet (UV) irradiation on representatives of detrital food webs have not been assessed so far. Hence, the present study displayed for the first time adverse sublethal effects of nTiO at concentrations as low as 0.2 mg L on the leaf shredding amphipod both in presence and absence of ambient UV-irradiation following a 7-d exposure. In absence of UV-irradiation, however, the effects seemed to be driven by accumulation of nTiO at the bottom of the test vessels to which the gammarids were potentially exposed. The adverse sublethal and lethal effects on gammarids caused by the combined application of nTiO and ambient UV-irradiation are suggested to be driven by the formation of reactive oxygen species. In conclusion, both the accumulation of nTiO at the bottom of the test vessel and the UV induced formation of reactive oxygen species clearly affected its ecotoxicity, which is recommended for consideration in the environmental risk assessment of nanoparticles.
    Keywords: Nanoparticle ; Titanium Dioxide ; Ultraviolet Irradiation ; Gammarus Fossarum ; Accumulation ; Reactive Oxygen Species ; Chemistry ; Ecology
    ISSN: 0045-6535
    E-ISSN: 1879-1298
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Science of the Total Environment, 15 November 2016, Vol.571, pp.992-1000
    Description: Shredders play a central role in the breakdown of leaf material in aquatic systems. These organisms and the ecological function they provide may, however, be affected by chemical stressors either as a consequence of direct waterborne exposure or through alterations in food-quality (indirect pathway). To unravel the biological relevance of these effect pathways, we applied a 2 × 2-factorial test design. Leaf material was microbially colonized for 10 days in absence or presence of the fungicide epoxiconazole (15 μg/L) and subsequently fed to the shredder under exposure to epoxiconazole (15 μg/L) or in fungicide-free medium over a 28-day period ( = 40). Both effect pathways caused alterations in asselids' food processing, physiological fitness, and growth, although not always statistically significantly: assimilation either increased or remained at a similar level relative to the control suggesting compensatory behavior of to cope with the enhanced energy demand for detoxification processes and decreased nutritional quality of the food. The latter was driven by lowered microbial biomasses and the altered composition of fatty acids associated with the leaf material. Even with increased assimilation, direct and indirect effects caused decreases in the growth and lipid (fatty acid) content of with relative effect sizes between 10 and 40%. Moreover, the concentrations of two essential polyunsaturated fatty acids (i.e., arachidonic acid and eicosapentaenoic acid) were non-significantly reduced (up to ~ 15%) in asselids. This effect was, however, independent of the exposure pathway. Although waterborne effects were generally stronger than the diet-related effects, results suggest impaired functioning of via both effect pathways.
    Keywords: Asellus Aquaticus ; Biofilm ; Fatty Acid Composition ; Food Quality ; Leaf Litter Breakdown ; Shredder ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Environmental Pollution, May 2018, Vol.236, pp.119-125
    Description: Systemic neonicotinoid insecticides such as imidacloprid are increasingly applied against insect pest infestations on forest trees. However, leaves falling from treated trees may reach nearby surface waters and potentially represent a neonicotinoid exposure source for aquatic invertebrates. Given imidacloprid's susceptibility towards photolysis and high water solubility, it was hypothesized that the leaves' toxicity might be modulated by UV-irradiation during decay on the forest floor, or by leaching and re-mobilization of the insecticide from leaves within the aquatic ecosystem. To test these hypotheses, the amphipod shredder was fed (over 7 d;  = 30) with imidacloprid-contaminated black alder ( ) leaves that had either been pre-treated (i.e., leached) in water for up to 7 d or UV-irradiated for 1 d (at intensities relevant during autumn in Central Europe) followed by a leaching duration of 1 d. Gammarids' feeding rate, serving as sublethal response variable, was reduced by up to 80% when consuming non-pretreated imidacloprid-contaminated leaves compared to imidacloprid-free leaves. Moreover, both leaching of imidacloprid from leaves (for 7 d) as well as UV-irradiation reduced the leaves' imidacloprid load (by 46 and 90%) thereby mitigating the effects on gammarids' feeding rate to levels comparable to the respective imidacloprid-free controls. Therefore, natural processes, such as UV-irradiation and re-mobilization of foliar insecticide residues in water, might be considered when evaluating the risks systemic insecticide applications in forests might pose for aquatic organisms in nearby streams. UV-irradiation and leaching in water reduce imidacloprid residues in contaminated leaves consequently mitigating toxicity for a leaf-shredding amphipod.
    Keywords: Neonicotinoids ; Imidacloprid ; Gammarus ; Leaf Fall ; Engineering ; Environmental Sciences ; Anatomy & Physiology
    ISSN: 0269-7491
    E-ISSN: 1873-6424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Environmental Pollution, March 2017, Vol.222, pp.458-464
    Description: Leaf-shredding amphipods play a critical role in the ecosystem function of leaf litter breakdown, a key process in many low order streams. Fungicides, however, may adversely influence shredders' behavior and the functions they provide, while there is only limited knowledge concerning effects on their reproductive performance. To assess the latter, a semi-static 56-day partial life-cycle bioassay using the model shredder (  = 30) was performed applying two environmentally relevant concentrations of a model fungicide mixture (i.e., 5 and 25 μg/L) composed of five fungicides with different modes of toxic action. Variables related to the food processing (leaf consumption and feces production), growth (body length and dry weight), energy reserves (lipid content), and reproduction (amplexus pairs, number and length of offspring) were determined to understand potential implications in the organisms' energy budget. While the fungicides did not affect leaf consumption, both fungicide treatments significantly reduced amphipods' feces production (∼20%) compared to the control. This observation suggests an increased food utilization to counteract the elevated and stress-related energy demand: although growth as well as energy reserves were unaffected, amplexus pairs were less frequently observed in both fungicide treatments (∼50–100%) suggesting a tradeoff regarding energy allocation favoring the maintenance of fundamental functions at the organism level over reproduction. As a result, the time to release of first offspring was delayed in both fungicide treatments (7 and 14 days) and the median number of offspring was significantly lower in the 25-μg/L treatment (100%), whereas offspring length remained unaffected. The results of this study thus indicate that chronic fungicide exposures can negatively impact shredders' reproductive performance. This may translate into lower abundances and thus a reduced contribution to leaf litter breakdown in fungicide-impacted streams with potentially far-reaching consequences for detritus-based food webs. Chronic exposure to environmentally relevant fungicide concentrations can negatively impact leaf-shredders' reproductive performance.
    Keywords: Shredder ; Fungicide ; Mixture ; Energy Allocation ; Reproduction ; Engineering ; Environmental Sciences ; Anatomy & Physiology
    ISSN: 0269-7491
    E-ISSN: 1873-6424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Environmental Pollution, December 2017, Vol.231, pp.1393-1397
    Description: Invertebrate-mediated leaf litter decomposition is frequently used to assess stress-related implications in stream ecosystem integrity. measures such as the mass loss from leaf bags or the feeding of caged invertebrates deployed for days or weeks may, however, fail to detect transient effects due to recovery or compensatory mechanisms. We assessed the relevance of transient effects using the peak exposure towards an insecticide (i.e., etofenprox) as a model scenario at three levels of complexity. These were 1) the assessment of the decomposition realised by invertebrate communities in stream mesocosms over 21 days via leaf bags, 2) 7-days lasting bioassays quantifying the leaf consumption of , and 3) a laboratory experiment determining the daily feeding rate of the same species over 7 days. Etofenprox did not trigger a significantly altered decomposition by invertebrate communities during the leaf bag assay, while bioassays detected a significant reduction in gammarids’ feeding rate at the highest tested concentration. The laboratory bioassay suggests that observed mismatches might be explained by recovery and post-exposure compensation. As leaf-shredding invertebrates are likely in a vulnerable state following transient effects, biomonitoring for implications of peak exposures and other pulsed stress events must happen at an adequate temporal resolution.
    Keywords: Compensatory Feeding ; Ecosystem Integrity ; Functional Response ; Insecticide Peak Exposure ; Engineering ; Environmental Sciences ; Anatomy & Physiology
    ISSN: 0269-7491
    E-ISSN: 1873-6424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Global Change Biology, February 2018, Vol.24(2), pp.e402-e415
    Description: Ecosystem functions in streams (e.g., microbially mediated leaf litter breakdown) are threatened globally by the predicted agricultural intensification and its expansion into pristine areas, which is associated with increasing use of fertilizers and pesticides. However, the ecological consequences may depend on the disturbance history of microbial communities. To test this, we assessed the effects of fungicides and nutrients (four levels each) on the structural and functional resilience of leaf‐associated microbial communities with differing disturbance histories (pristine vs. previously disturbed) in a 2 × 4 × 4‐factorial design (=6) over 21 days. Microbial leaf breakdown was assessed as a functional variable, whereas structural changes were characterized by the fungal community composition, species richness, biomass, and other factors. Leaf breakdown by the pristine microbial community was reduced by up to 30% upon fungicide exposure compared with controls, whereas the previously disturbed microbial community increased leaf breakdown by up to 85%. This significant difference in the functional response increased in magnitude with increasing nutrient concentrations. A pollution‐induced community tolerance in the previously disturbed microbial community, which was dominated by a few species with high breakdown efficacies, may explain the maintained function under stress. Hence, the global pressure on pristine ecosystems by agricultural expansion is expected to cause a modification in the structure and function of heterotrophic microbial communities, with microbially mediated leaf litter breakdown likely becoming more stable over time as a consequence of fungal community adaptions. Agricultural land use is projected to expand and intensify globally, with elevated chemical stress release to adjacent streams. We assessed if leaf‐associated microbial communities adapt to a combination of two agricultural stressors, namely fungicides and nutrients. Under fungicide stress, previously disturbed communities showed an even stimulated rate of leaf litter breakdown, while microbial communities from a pristine site were negatively affected. Nutrients induced positive effects on leaf litter breakdown, which was stronger for the previously disturbed community. These observations are likely explained by a dominance of tolerant and effective fungal decomposers that were able to maintain their biomass and sporulation.
    Keywords: Agricultural Intensification ; Aquatic Hyphomycetes ; Bacteria ; Biofilm ; Ecosystem Function ; Fungicides ; Land Use ; Nutrients
    ISSN: 1354-1013
    E-ISSN: 1365-2486
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Environmental Pollution, October 2018, Vol.241, pp.549-556
    Description: Waterborne exposure towards fungicides is known to trigger negative effects in aquatic leaf-associated microbial decomposers and leaf-shredding macroinvertebrates. We expected similar effects when these organisms use leaf material from terrestrial plants that were treated with systemic fungicides as a food source since the fungicides may remain within the leaves when entering aquatic systems. To test this hypothesis, we treated black alder ( ) trees with a tap water control or a systemic fungicide mixture (azoxystrobin, cyprodinil, quinoxyfen, and tebuconazole) at two worst-case application rates. Leaves of these trees were used in an experiment targeting alterations in two functions provided by leaf-associated microorganisms, namely the decomposition and conditioning of leaf material. The latter was addressed via the food-choice response of the amphipod shredder . During a second experiment, the potential impact of long-term consumption of leaves from trees treated with systemic fungicides on was assessed. Systemic fungicide treatment altered the resource quality of the leaf material resulting in trends of increased fungal spore production and an altered community composition of leaf-associated fungi. These changes in turn caused a significant preference of for microbially conditioned leaves that had received the highest fungicide treatment over control leaves. This higher food quality ultimately resulted in a higher gammarid growth (up to 300% increase) during the long-term feeding assay. Although the underlying mechanisms still need to be addressed, the present study demonstrates a positive indirect response in aquatic organisms due to systemic pesticide application in a terrestrial system. As the effects from the introduction of plant material treated with systemic fungicides strongly differ from those mediated via other pathways (e.g., waterborne exposure), our study provides a novel perspective of fungicide-triggered effects in aquatic detritus-based food webs. Leaves from trees treated with systemic fungicides cause positive effects in an aquatic decomposer-detritivore system.
    Keywords: Aquatic Hyphomycetes ; Gammarus Fossarum ; Resource Quality ; Systemic Pesticides ; Engineering ; Environmental Sciences ; Anatomy & Physiology
    ISSN: 0269-7491
    E-ISSN: 1873-6424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Environmental Pollution, 2015, Vol.205, pp.16-22
    Description: Copper (Cu) exposure can increase leaf-associated fungal biomass, an important food component for leaf-shredding macroinvertebrates. To test if this positive nutritional effect supports the physiological fitness of these animals and to assess its importance compared to waterborne toxicity, we performed...
    Keywords: Other Biological Topics ; Annan Biologi
    ISSN: 0269-7491
    E-ISSN: 18736424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Environmental Toxicology and Chemistry, December 2011, Vol.30(12), pp.2718-2724
    Description: Leaf litter breakdown is a fundamental process in aquatic ecosystems that is realized by microbial decomposers and invertebrate detritivores. Although this process may be adversely affected by fungicides, among other factors, no test design exists to assess combined effects on such decomposer–detritivore systems. Hence, the present study assessed effects of the model fungicide tebuconazole (65 µg/L) on the conditioning of leaf material (by characterizing the associated microbial community) as well as the combined effects (i.e., direct toxicity and food quality‐related effects (=indirect)) on the energy processing of the leaf‐shredding amphipod using a five‐week semistatic test design. Gammarids exposed to tebuconazole produced significantly less feces (∼20%), which in turn significantly increased their assimilation (∼30%). Moreover, a significantly reduced lipid content (∼20%) indicated lower physiological fitness. The conditioning process was altered as well, which was indicated by a significantly reduced fungal biomass (∼40%) and sporulation (∼30%) associated with the leaf material. These results suggest that tebuconazole affects both components of the investigated decomposer‐detritivore system. However, adverse effects on the level of detritivores cannot be explicitly attributed to direct or indirect pathways. Nevertheless, as the endpoints assessed are directly related to leaf litter breakdown and associated energy transfer processes, the protectiveness of environmental risk assessment for this ecosystem function may be more realistically assessed in future studies by using this or comparable test designs. Environ. Toxicol. Chem. 2011;30:2718–2724. © 2011 SETAC
    Keywords: Combined Effects ; Environmental Risk Assessment ; Leaf Litter Breakdown ; Microbial Community ; Shredder
    ISSN: 0730-7268
    E-ISSN: 1552-8618
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages