Kooperativer Bibliotheksverbund

Berlin Brandenburg


Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Language: English
    In: Journal of Controlled Release, 2007, Vol.117(1), pp.51-58
    Description: Poly(butyl cyanoacrylate) nanoparticles coated with poloxamer 188 (Pluronic® F68) and also, as shown previously, polysorbate 80 (Tween® 80) considerably enhance the anti-tumour effect of doxorubicin against an intracranial glioblastoma in rats. The investigation of plasma protein adsorption on the surface of the drug-loaded nanoparticles by two-dimensional electrophoresis (2-D PAGE) revealed that both surfactants, besides other plasma components, induced a considerable adsorption of apolipoprotein A-I (ApoA-I). It is hypothesized that delivery of doxorubicin to the brain by means of nanoparticles may be augmented by the interaction of apolipoprotein A-I that is anchored on the surface of the nanoparticles with the scavenger receptor class B type I (SR-BI) located at the blood–brain barrier. This is the first study that shows a correlation between the adsorption of apolipoprotein A-I on the nanoparticle surface and the delivery of the drug across the blood–brain barrier.
    Keywords: Apolipoprotein A-I ; Chemotherapy ; Glioblastoma ; Nanoparticles ; Poly(Butyl Cyanoacrylate) ; Poloxamer 188 ; Polysorbate 80 ; Rats ; Pharmacy, Therapeutics, & Pharmacology
    ISSN: 0168-3659
    E-ISSN: 1873-4995
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Toxicology Letters, 2002, Vol.126(2), pp.131-141
    Description: Polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles (NP) were shown to enable the transport of a number of drugs including the anti-tumour antibiotic doxorubicin (DOX) across the blood-brain barrier (BBB) to the brain after intravenous administration and to considerably reduce the growth of brain tumours in rats. The objective of the present study was to evaluate the acute toxicity of DOX associated with polysorbate 80-coated NP in healthy rats and to establish a therapeutic dose range for this formulation in rats with intracranially implanted 101/8 glioblastoma. Single intravenous administration of empty poly(butyl cyanoacrylate) NP in the dose range 100-400 mg/kg did not cause mortality within the period of observation. NP also did not affect body weight or weight of internal organs. Association of DOX with poly(butyl cyanoacrylate) NP did not produce significant changes of quantitative parameters of acute toxicity of the anti-tumour agent. Likewise, the presence of polysorbate 80 in the formulations was not associated with changes in toxicity compared with free or nanoparticulate drug. Dose regimen of 3 x 1.5 mg/kg on days 2, 5, 8 after tumour implantation did not cause drug-induced mortality. The results in tumour-bearing rats were similar to those in healthy rats. These results demonstrate that the toxicity of DOX bound to NP was similar or even lower than that of free DOX.
    Keywords: Doxorubicin ; Glioblastoma ; Nanoparticles ; Poly(Butyl Cyanoacrylate) ; Polysorbate ; Toxicology ; Rats ; Pharmacy, Therapeutics, & Pharmacology ; Public Health
    ISSN: 0378-4274
    E-ISSN: 1879-3169
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages