Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Forests, 01 February 2017, Vol.8(2), p.37
    Description: More intensive removal of woody biomass for the bio-economy will disrupt litter and succession cycles. Especially at risk is the retention of fine and coarse woody debris (FWD and CWD), crucial factors in forest biodiversity and nutrient cycling. However, to what extent CWD affects soil functioning...
    Keywords: Soil Management ; Silviculture ; Disturbances ; Fagus Sylvatica ; Biodiversity ; Bioeconomy ; Forestry
    E-ISSN: 1999-4907
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Geochimica et Cosmochimica Acta, 2006, Vol.70(3), pp.595-607
    Description: Anions of polycarboxylic low-molecular-weight organic acids (LMWOA) compete with phosphate for sorption sites of hydrous Fe and Al oxides. To test whether the sorption of LMWOA anions decreases the accessibility of micropores (〈2 nm) of goethite (α-FeOOH) for phosphate, we studied the kinetics of citrate-induced changes in microporosity and the phosphate sorption kinetics of synthetic goethite in the presence and absence of citrate in batch systems for 3 weeks (500 μM of each ion, pH 5). We also used C-coated goethite obtained after sorption of dissolved organic matter in order to simulate organic coatings in the soil. We analyzed our samples with N adsorption and electrophoretic mobility measurements. Citrate clogged the micropores of both adsorbents by up to 13% within 1 h of contact. The micropore volume decreased with increasing concentration and residence time of citrate. In the absence of citrate, phosphate diffused into micropores of the pure and C-coated goethite. The C coating (5.6 μmol C m ) did not impair the intraparticle diffusion of phosphate. In the presence of citrate, the diffusion of phosphate into the micropores of both adsorbents was strongly impaired. We attribute this to the micropore clogging and the ligand-induced dissolution of goethite by citrate. While the diffusion limitation of phosphate by citrate was stronger when citrate was added before phosphate to pure goethite, the order of addition of both ions to C-coated goethite had only a minor effect on the intraparticle diffusion of phosphate. Micropore clogging and dissolution of microporous hydrous Fe and Al oxides may be regarded as potential strategies of plants to cope with phosphate deficiency in addition to ligand-exchange.
    Keywords: Geology
    ISSN: 0016-7037
    E-ISSN: 1872-9533
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Geochimica et Cosmochimica Acta, 2006, Vol.70(12), pp.2957-2969
    Description: Hydration of organic coatings in soils is expected to affect the sorption of oxyanions onto hydrous Fe and Al oxides. We hypothesized that the hydration of polygalacturonate (PGA) coatings on alumina (Al O ) increases their permeability for phosphate. Pure and PGA-coated alumina were equilibrated in deionized water for 2 and 170 h at pH 5 and 20 °C before studying (i) their porosity with N gas adsorption and H NMR relaxometry, (ii) structural changes of PGA-coatings with differential scanning calorimetry (DSC), and (iii) the kinetics of phosphate sorption and PGA desorption in batch experiments. Scanning electron micrographs revealed that PGA molecules formed three-dimensional networks with pores ranging in size from 〈10 to several hundred nanometers. Our NMR results showed that the water content of intraparticle alumina pores decreased upon PGA sorption, indicating a displacement of pore water by PGA. The amount of water in interparticle alumina pores increased strongly after PGA addition, however, and was attributed to water in pores of PGA and/or in pores at the PGA-alumina interface. The flexibility of PGA molecules and the fraction of a PGA gel phase increased within one week of hydration, implying restructuring of PGA. Hydration of PGA coatings increased the amount of phosphate defined as instantaneously sorbed by 84%, showing that restructuring of PGA enhanced the accessibility of phosphate to external alumina surfaces. Despite the fact that the efficacy of phosphate to displace PGA was higher after 170 h than after 2 h, a higher phosphate surface loading was required after 170 h to set off PGA desorption. Our findings imply that the number of PGA chain segments directly attached to the alumina surface decreased with time. We conclude that hydration/dehydration of polymeric surface coatings affects the sorption kinetics of oxyanions, and may thus control the sorption and transport of solutes in soils.
    Keywords: Geology
    ISSN: 0016-7037
    E-ISSN: 1872-9533
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Journal of Contaminant Hydrology, December 2016, Vol.195, pp.31-39
    Description: Engineered nanoparticles released into soils may be coated with humic substances, potentially modifying their surface properties. Due to their amphiphilic nature, humic coating is expected to affect interaction of nanoparticle at the air-water interface. In this study, we explored the roles of the air-water interface and solid-water interface as potential sites for nanoparticle attachment and the importance of hydrophobic interactions for nanoparticle attachment at the air-water interface. By exposing Ag nanoparticles to soil solution extracted from the upper soil horizon of a floodplain soil, the mobility of the resulting “soil-aged” Ag nanoparticles was investigated and compared with the mobility of citrate-coated Ag nanoparticles as investigated in an earlier study. The mobility was determined as a function of hydrologic conditions and solution chemistry using column breakthrough curves and numerical modeling. Specifically, we compared the mobility of both types of nanoparticles for different unsaturated flow conditions and for pH = 5 and pH = 9. The soil-aged Ag NP were less mobile at pH = 5 than at pH = 9 due to lower electrostatic repulsion at pH = 5 for both types of interfaces. Moreover, the physical flow field at different water contents modified the impact of chemical forces at the solid-water interface. An extended Derjaguin-Landau-Verwey-Overbeek (eDLVO) model did not provide satisfactory explanation of the observed transport phenomena unlike for the citrate-coated case. For instance, the eDLVO model assuming sphere-plate geometry predicts a high energy barrier (〉 90 ) for the solid-water interface, indicating that nanoparticle attachment is less likely. Furthermore, retardation through reversible sorption at the air-water interface was probably less relevant for soil-aged nanoparticles than for citrate-coated nanoparticles. An additional cation bridging mechanism and straining within the flow field may have enhanced nanoparticle retention at the solid-water interface. The results indicate that the mobility of engineered Ag nanoparticles is sensitive to solution chemistry, especially pH and the concentration of multivalent cations, and to the unsaturated flow conditions influencing particle interaction at biogeochemical interfaces.
    Keywords: Unsaturated Transport ; Water Dynamics ; Cation Bridging ; Amphiphilic ; Edlvo ; Engineering ; Environmental Sciences ; Geography
    ISSN: 0169-7722
    E-ISSN: 1873-6009
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Soil Science Society of America Journal, Sept-Oct, 2006, Vol.70(5), p.1731(10)
    Description: Uronates are important constituents of maize mucilage and polyuronates are used as a simplified model of the soil--root interface. We tested whether galacturonate (GA) and polygalacturonate (PGA) impair the diffusion of phosphate (P[O.sub.4]) into and out of pores of a synthetic goethite (147 [m.sup.2] [g.sup.-1]) and whether the effect of maize mucigel (MU) is comparable to PGA. We measured the P[O.sub.4] desorption kinetics of goethites in batch experiments over 2 wk at pH 5. One part of the goethite was equilibrated with organic substances before P[O.sub.4] addition, another part after addition of P[O.sub.4]. Before the desorption experiments, the porosity of our samples was analyzed by [N.sub.2] gas adsorption. In each treatment a rapid initial desorption was followed by a slow desorption reaction, which is assigned to the diffusion of P[O.sub.4] out of mineral pores. No consistent relation between the micro- and mesoporosity and the rate of the slow P[O.sub.4] desorption was observed. Compared with the C-free control, only PGA and MU affected the fraction of P[O.sub.4] mobilized by the fast and slow desorption reaction: when PGA was sorbed to goethite before P[O.sub.4], twice as much P[O.sub.4] was mobilized via the fast reaction than in the treatment where P[O.sub.4] was sorbed before PGA, suggesting a decreased accessibility of goethite pores to P[O.sub.4]. Mucigel, however, showed reversed effects, which is ascribed to its differing chemical composition. In conclusion, PGA seems inappropriate as a model substance for maize MU collected from non-axenic sand cultures. Under the experimental conditions chosen, the efficacy of all organic substances to increase P[O.sub.4] solution concentrations by pore clogging and sorption competition is small.
    Keywords: Phosphates -- Research ; Sorption -- Research
    ISSN: 0361-5995
    E-ISSN: 14350661
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Soil Science Society of America Journal, March-April, 2006, Vol.70(2), p.541(9)
    Description: Biogenetic polysugars may affect the sorption characteristics of soil mineral particles in the rhizosphere. We hypothesized that polygalacturonate [PGA, ([[C.sub.6][H.sub.7][O.sub.6]).sub.n.sup.-]] coatings on goethite reduce the diffusion of phosphate into the pores of the adsorbent. Goethite was preloaded with PGA (0-10 mg C [g.sup.-1]). The samples were characterized by [N.sub.2] and C[O.sub.2] adsorption, electrophoretic mobility measurements, and scanning electron microscopy/energy dispersive X-ray analysis (SEM-EDX). The phosphate sorption kinetics was studied with batch experiments over 2 wk at pH 5 and an initial phosphate concentration of 250 [micro]M. Pore volume and specific surface area of the goethite samples declined after PGA addition. The PGA coatings reduced the [zeta]-potential of goethite from 42.3 to -39.6 mV at the highest C loading. With increasing PGA-C content and decreasing [zeta]-potential the amount of phosphate sorbed after 2 wk decreased linearly (P 〈 0.001). Sorption of phosphate to pure and PGA-coated goethite showed an initial fast sorption followed by a slow sorption reaction. At the smallest C loading (5.5 mg C [g.sup.-1]) the portion of phosphate retained by the slow reaction was smaller than for the treatment without any PGA, while at higher C loadings the fraction of slowly immobilized phosphate increased. Our results suggest that at low C-loadings PGA impaired the intraparticle diffusion of phosphate. In contrast, the slow step-by-step desorption of PGA (〈52% within 2 wk) or the diffusion of phosphate through PGA coatings or both are rate limiting for the slow phosphate reaction at C loadings 〉 5.5 mg C [g.sup.-1].
    Keywords: Soil Phosphorus -- Research ; Soil Chemistry -- Research ; X-ray Analysis
    ISSN: 0361-5995
    E-ISSN: 14350661
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Soil Science Society of America Journal, Nov-Dec, 2004, Vol.68(6), p.1853(10)
    Description: Recent [N.sub.2] adsorption studies have suggested a 'pore clogging' effect on mineral soil phases caused by organic matter coatings. For methodological reasons, this pore clogging effect has been studied only after drying. Our hypothesis was that pore clogging is affected by drying of organic coatings. In our study, we used AlOOH, which has been equilibrated with dissolved organic matter (DOM) and polygalacturonic acid [[PGA; [([C.sub.6][H.sub.8][O.sub.6]).sup.n]]. To test our hypothesis, we determined the porosity of moist and freeze-dried AlOOH samples. Freeze-dried samples were analyzed by [N.sub.2] adsorption, moist samples by [sup.1]H-nuclear magnetic resonance (NMR). In addition, the samples were characterized by environmental scanning electron microscopy--energy dispersive x-ray spectroscopy (ESEM-EDX). Both, DOM and PGA significantly reduced specific surface area (SS[A.sub.BET]) of AlOOH by 34 [m.sup.2][g.sup.-1](15%) and 77 [m.sup.2] [g.sup.-1] (36%). The reduction in SS[A.sub.BET] normalized to the amount of C sorbed was 1.0 [m.sup.2] [mg.sup.-1] DOM-C and 5.9 [m.sup.2] [mg.sup.-1] PGA-C. Dissolved OM reduced the pore volume of micro- and small mesopores 〈3 nm whereas PGA also reduced the volume of larger pores. The [sup.1]H-NMR results of moist samples showed that PGA sorption reduced the amount of water in pores 〈4 nm. In addition, the pore size maximum of AlOOH increased by 150%. Polygalacturonic acid coatings created new interparticle pores of about 10- to 70-nm size that are not stable upon freeze-drying. Porosity changes upon DOM-treatment were not commensurable by [sup.1]H-NMR. Our results indicate that clogging of micro- and small mesopores is not an artifact of freeze-drying. Polygalacturonic acid seems not only to cover the mouth of AlOOH-nanometer pores but also to fill them.
    Keywords: Soil Mineralogy -- Research
    ISSN: 0361-5995
    E-ISSN: 14350661
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Soil Science Society of America Journal, Sept-Oct, 2006, Vol.70(5), p.1547(9)
    Description: Organic coatings on Fe oxides can decrease the accessibility of intraparticle pores for oxyanions like phosphate. We hypothesized that the slow sorption of phosphate to goethite coated with polygalacturonate (PGA) is controlled by the accessibility of external goethite surfaces to phosphate rather than by diffusion of phosphate into micropores ([empty set] 〈 2 nm). We studied the phosphate sorption kinetics of pure and PGA-coated goethites that differed in their microporosity ([N.sub.2] at 77 K, 46 vs. 31 [mm.sup.3] [g.sup.-1]). Because drying may affect the structure or surface coverage of PGA, we also tested the effect of freeze-drying on the slow phosphate sorption. The samples were examined by gas adsorption ([N.sub.2], C[O.sub.2]) and electrophoretic mobility measurements. Phosphate sorption and PGA-C desorption were studied in batch experiments for 3 wk at pH 5. In PGA-coated samples, the slow phosphate sorption was independent of micropore volume. Phosphate displaced on average 57% of PGA-C within 3 wk. Similar to phosphate sorption, the PGA-C desorption comprised a rapid initial desorption, which was followed by a slow C desorption. Sorption competition between phosphate and presorbed PGA depended on the 〈10-nm porosity and the C loading of the adsorbent. The efficacy of phosphate to desorb PGA generally increased after freeze-drying. We conclude for PGA-coated goethites that (i) freeze-drying biased the slow phosphate sorption by changing the structure/surface coverage of PGA, and (ii) within the time frame studied, micropores did not limit the rate of the slow phosphate sorption. Rather, the slow, gradual desorption of PGA and/or the diffusion of phosphate through PGA coatings controlled the slow phosphate sorption to PGA-coated goethite.
    Keywords: Mineralogical Research -- Analysis ; Phosphates -- Research ; Sorption -- Research
    ISSN: 0361-5995
    E-ISSN: 14350661
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Soil Science Society of America journal, 2008, Vol.72(6), pp.1694-1707
    Description: Proton nuclear magnetic resonance (1H NMR) relaxometry has been used to analyze pore size distributions of wet porous samples. To make this method applicable to soil samples, knowledge about contribution from the soil solution to the total proton relaxation is needed. We extracted soil solutions from nine soil samples and determined transverse proton relaxation rates, the concentration of Fe, Mn, and total organic C (TOC), and the pH of the solutions. The effects of Fe, Mn, and TOC on the proton relaxation in the soil solution were compared with those of dissolved Fe2+, Fe3+, and Mn2+ and of glucose, D-cellobiose, potassium hydrogen phthalate, sodium alginate, and agar in model solutions. Proton relaxation rates in the soil solutions were up to 20 times larger than in pure water, which was mainly due to dissolved Fe(III) and Mn(II) species. The relaxivities of Fe and Mn in soil solution were reduced to 40 and 70% compared with Fe(III) and Mn(II) in a model solution, respectively. Smaller relaxivities were primarily due to the formation of metal-organic complexes. We conclude that the proton relaxation in soil samples is generally accelerated by the soil solution, and its contribution must be considered to estimate pore sizes from relaxation times. By using the calculated relaxivities of Fe and Mn in soil solution, the contribution of the soil solution to the total proton relaxation can be estimated from the Fe and Mn concentration in the soil solution. ; Includes references ; p. 1694-1707.
    Keywords: Soil Organic Carbon ; Goethite ; Cellobiose ; Soil Solution ; Agar ; Soil Pore System ; Manganese ; Ions ; Iron ; Colloids ; Sampling ; Alginates ; Glucose ; Extracts ; Chemical Concentration ; Chemical Composition ; Nuclear Magnetic Resonance Spectroscopy ; Montmorillonite ; Sodium Alginate ; Pore Size Distribution ; Proton Relaxation ; Potassium Hydrogen Phthalate
    ISSN: 0361-5995
    E-ISSN: 14350661
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages