Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • RNA, Small Untranslated  (8)
  • Hfq
Type of Medium
Language
Year
  • 1
    In: EMBO Journal, 03 June 2015, Vol.34(11), pp.1478-1492
    Description: There is an expanding list of examples by which one can posttranscriptionally influence the expression of others. This can involve sponges that sequester regulatory s of s in the same regulon, but the underlying molecular mechanism of such cross talk remains little understood. Here, we report sponge‐mediated cross talk in the posttranscriptional network of GcvB, a conserved Hfq‐dependent small with one of the largest regulons known in bacteria. We show that decay from the locus encoding an amino acid transporter generates a stable fragment (SroC) that base‐pairs with GcvB. This interaction triggers the degradation of GcvB by ase E, alleviating the GcvB‐mediated repression of other amino acid‐related transport and metabolic genes. Intriguingly, since the itself is a target of GcvB, the SroC sponge seems to enable both an internal feed‐forward loop to activate its parental in and activation of many ‐encoded s in the same pathway. Disabling this cross talk affects bacterial growth when peptides are the sole carbon and nitrogen sources. Decay of the bacterial GcvB , which keeps it from regulating its targets, is triggered by a 3′‐‐derived fragment from a target . This ability of s to compete for regulatory interaction presents a new mode of cross talk in bacteria. . Decay of the bacterial GcvB s, which keeps it from regulating its m targets, is triggered by a 3′‐‐derived fragment from a target m. This ability of ms to compete for regulatory interaction presents a new mode of cross talk in bacteria.
    Keywords: G Cv B ; H Fq ; Noncoding Rna ; Rn Ase E ; S Ro C
    ISSN: 0261-4189
    E-ISSN: 1460-2075
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: EMBO Journal, 17 October 2012, Vol.31(20), pp.4005-4019
    Description: The small RNAs associated with the protein Hfq constitute one of the largest classes of post‐transcriptional regulators known to date. Most previously investigated members of this class are encoded by conserved free‐standing genes. Here, deep sequencing of Hfq‐bound transcripts from multiple stages of growth of revealed a plethora of new small RNA species from within mRNA loci, including DapZ, which overlaps with the 3′ region of the biosynthetic gene, . Synthesis of the DapZ small RNA is independent of DapB protein synthesis, and is controlled by HilD, the master regulator of invasion genes. DapZ carries a short G/U‐rich domain similar to that of the globally acting GcvB small RNA, and uses GcvB‐like seed pairing to repress translation of the major ABC transporters, DppA and OppA. This exemplifies double functional output from an mRNA locus by the production of both a protein and an Hfq‐dependent ‐acting RNA. Our atlas of Hfq targets suggests that the 3′ regions of mRNA genes constitute a rich reservoir that provides the Hfq network with new regulatory small RNAs. Deep sequencing of Hfq‐binding RNAs isolated from at different growth stages reveals that the 3′ UTR of bacterial mRNAs are a rich source of regulatory small RNAs which modulate gene expression in trans.
    Keywords: Abc Transporter ; Dapz ; Gcvb ; Hfq ; 3′ Utr
    ISSN: 0261-4189
    E-ISSN: 1460-2075
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Molecular Cell, 04 February 2016, Vol.61(3), pp.352-363
    Description: Small RNAs (sRNAs) from conserved noncoding genes are crucial regulators in bacterial signaling pathways but have remained elusive in the Cpx response to inner membrane stress. Here we report that an alternative biogenesis pathway releasing the conserved mRNA 3′ UTR of stress chaperone CpxP as an ∼60-nt sRNA provides the noncoding arm of the Cpx response. This so-called CpxQ sRNA, generated by general mRNA decay through RNase E, acts as an Hfq-dependent repressor of multiple mRNAs encoding extracytoplasmic proteins. Both CpxQ and the Cpx pathway are required for cell survival under conditions of dissipation of membrane potential. Our discovery of CpxQ illustrates how the conversion of a transcribed 3′ UTR into an sRNA doubles the output of a single mRNA to produce two factors with spatially segregated functions during inner membrane stress: a chaperone that targets problematic proteins in the periplasm and a regulatory RNA that dampens their synthesis in the cytosol. Chao and Vogel discover that a small RNA cleaved off the 3′ end of an mRNA provides the elusive regulatory noncoding arm of the bacterial Cpx response to inner membrane stress.
    Keywords: Cpx Pathway ; Cpxp ; Cpxq ; 3′ Utr ; Hfq ; Rnase E ; Noncoding RNA ; Nhab ; Envelope Stress ; Membrane Potential ; Biology
    ISSN: 1097-2765
    E-ISSN: 1097-4164
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Frontiers in cellular and infection microbiology, 2014, Vol.4, pp.91
    Description: Enteric pathogens often cycle between virulent and saprophytic lifestyles. To endure these frequent changes in nutrient availability and composition bacteria possess an arsenal of regulatory and metabolic genes allowing rapid adaptation and high flexibility. While numerous proteins have been characterized with regard to metabolic control in pathogenic bacteria, small non-coding RNAs have emerged as additional regulators of metabolism. Recent advances in sequencing technology have vastly increased the number of candidate regulatory RNAs and several of them have been found to act at the interface of bacterial metabolism and virulence factor expression. Importantly, studying these riboregulators has not only provided insight into their metabolic control functions but also revealed new mechanisms of post-transcriptional gene control. This review will focus on the recent advances in this area of host-microbe interaction and discuss how regulatory small RNAs may help coordinate metabolism and virulence of enteric pathogens.
    Keywords: Csra ; Hfq ; Carbon Metabolism ; Srna ; Virulence ; Energy Metabolism ; Carbon -- Metabolism ; Intestines -- Microbiology ; RNA, Small Untranslated -- Genetics
    E-ISSN: 2235-2988
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Annual review of genetics, 2015, Vol.49, pp.367-94
    Description: Over the past decade, bacterial small RNAs (sRNAs) have gone from a biological curiosity to being recognized as a major class of regulatory molecules. High-throughput methods for sampling the transcriptional output of bacterial cells demonstrate that sRNAs are universal features of bacterial transcriptomes, are plentiful, and appear to vary extensively over evolutionary time. With ever more bacteria coming under study, the question becomes how can we accelerate the discovery and functional characterization of sRNAs in diverse organisms. New technologies built on high-throughput sequencing are emerging that can rapidly provide global insight into the numbers and functions of sRNAs in bacteria of interest, providing information that can shape hypotheses and guide research. In this review, we describe recent developments in transcriptomics (RNA-seq) and functional genomics that we expect to help us develop an integrated, systems-level view of sRNA biology in bacteria.
    Keywords: Hfq ; RNA-Seq ; Tradis ; High-Throughput Technology ; Noncoding RNA ; Phenotype Mapping ; Ribosome Profiling ; Small RNA ; RNA, Bacterial -- Analysis ; RNA, Small Untranslated -- Analysis ; Sequence Analysis, RNA -- Methods
    ISSN: 00664197
    E-ISSN: 1545-2948
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: RNA Biology, 01 April 2012, Vol.9(4), pp.520-531
    Description: Helicobacter pylori, one of the most prevalent human pathogens, used to be thought to lack small regulatory RNAs (sRNAs) which are otherwise considered abundant in all bacteria. However, our recent analysis of the primary transcriptome of H. pylori discovered an unexpectedly large number of...
    Keywords: RNA-Seq ; Small RNA ; Hfq ; Helicobacter Pylori ; RNA Binding Proteins ; Affinity Chromatography ; Post-Transcriptional Control ; Co-Immunoprecipitation ; Anatomy & Physiology
    ISSN: 1547-6286
    E-ISSN: 1555-8584
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Methods in molecular biology (Clifton, N.J.), 2012, Vol.905, pp.177-200
    Description: Small regulatory RNAs (sRNAs) are short, generally noncoding RNAs that act posttranscriptionally to control target gene expression. Over the past 10 years there has been a rapid expansion in the discovery and characterization of sRNAs in a diverse range of bacteria. Paradigm shifts in our understanding of the breadth of posttranscriptional control by sRNAs were achieved in a number of pioneering studies that involved immunoprecipitation of a known RNA chaperone, the near-ubiquitous Hfq, followed by sequencing to identify novel putative regulators and targets. To perform the converse experiment, we previously developed a method which uses an aptamer-tagged sRNA to allow purification of in vivo assembled RNA-protein complexes and subsequent identification of bound proteins. We successfully implemented this protocol using the Hfq-associated sRNA, InvR, tagged with a tandem repeat of the commonly used MS2-aptamer. Incorporation of the aptamer had no effect on sRNA stability or activity. InvR-MS2 could be effectively purified along with associated proteins, such as Hfq, using maltose binding protein fused to the MS2 coat protein (MBP-MS2) immobilized on an amylose column. Mass-spectroscopy was also used to identify previously uncharacterized protein partners. These results have been described previously (Said et al., Nucleic Acids Res 37:e133, 2009) and thus the figures presented here are intended solely as an illustrative guide to complement this detailed step-by-step protocol.
    Keywords: Aptamers, Nucleotide -- Metabolism ; RNA, Small Untranslated -- Metabolism ; RNA-Binding Proteins -- Metabolism
    ISBN: 9781617799488
    ISSN: 10643745
    E-ISSN: 1940-6029
    Source: MEDLINE/PubMed (U.S. National Library of Medicine)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Molecular Cell, 05 January 2017, Vol.65(1), pp.39-51
    Description: Understanding RNA processing and turnover requires knowledge of cleavages by major endoribonucleases within a living cell. We have employed TIER-seq (transiently inactivating an endoribonuclease followed by RNA-seq) to profile cleavage products of the essential endoribonuclease RNase E in . A dominating cleavage signature is the location of a uridine two nucleotides downstream in a single-stranded segment, which we rationalize structurally as a key recognition determinant that may favor RNase E catalysis. Our results suggest a prominent biogenesis pathway for bacterial regulatory small RNAs whereby RNase E acts together with the RNA chaperone Hfq to liberate stable 3′ fragments from various precursor RNAs. Recapitulating this process in vitro, Hfq guides RNase E cleavage of a representative small-RNA precursor for interaction with a mRNA target. In vivo, the processing is required for target regulation. Our findings reveal a general maturation mechanism for a major class of post-transcriptional regulators. Chao et al. discover that the essential bacterial RNase E cleaves numerous transcripts at preferred sites by sensing uridine as a 2-nt ruler. RNase E processing of various precursor RNAs produces many small regulatory RNAs, constituting a major small-RNA biogenesis pathway in bacteria.
    Keywords: Rnase E ; RNA Degradome ; Non-Coding RNA ; Hfq ; 3′ Utr ; Arcz ; Rpra ; Srna Maturation ; Uridine Ruler ; Tier-Seq ; Biology
    ISSN: 1097-2765
    E-ISSN: 1097-4164
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages