Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: PLoS ONE, 2011, Vol.6(5), p.e19121
    Description: Chemotherapy of glioblastoma is largely ineffective as the blood-brain barrier (BBB) prevents entry of most anticancer agents into the brain. For an efficient treatment of glioblastomas it is necessary to deliver anti-cancer drugs across the intact BBB. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated with poloxamer 188 hold great promise as drug carriers for brain delivery after their intravenous injection. In the present study the anti-tumour efficacy of the surfactant-coated doxorubicin-loaded PLGA nanoparticles against rat glioblastoma 101/8 was investigated using histological and immunohistochemical methods. ; The particles were prepared by a high-pressure solvent evaporation technique using 1% polyvinylalcohol (PLGA/PVA) or human serum albumin (PLGA/HSA) as stabilizers. Additionally, lecithin-containing PLGA/HSA particles (Dox-Lecithin-PLGA/HSA) were prepared. For evaluation of the antitumour efficacy the glioblastoma-bearing rats were treated intravenously with the doxorubicin-loaded nanoparticles coated with poloxamer 188 using the following treatment regimen: 3×2.5 mg/kg on day 2, 5 and 8 after tumour implantation; doxorubicin and poloxamer 188 solutions were used as controls. On day 18, the rats were sacrificed and the antitumour effect was determined by measurement of tumour size, necrotic areas, proliferation index, and expression of GFAP and VEGF as well as Isolectin B4, a marker for the vessel density. ; The results reveal a considerable anti-tumour effect of the doxorubicin-loaded nanoparticles. The overall best results were observed for Dox-Lecithin-PLGA/HSA. These data demonstrate that the poloxamer 188-coated PLGA nanoparticles enable delivery of doxorubicin across the blood-brain barrier in the therapeutically effective concentrations.
    Keywords: Research Article ; Biology ; Medicine ; Immunology ; Oncology
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Journal of Microencapsulation, 01 January 2006, Vol.23(5), pp.582-592
    Description: Poly(n-butyl cyanoacrylate) nanoparticles coated with polysorbate-80 can enable the transport of bound drugs across the blood-brain barrier (BBB) after i.v. injection. In the present study the influence of different formulation parameters on the anti-tumoural effects of doxorubicin nanoparticles against glioblastoma 101/8 was investigated. The manufacturing parameters of poly(alkyl cyanoacrylate) doxorubicin-loaded nanoparticles were optimized concerning drug loading. The nanoparticles were coated with different surfactants and injected intravenously on days 2, 5 and 8 after intra-cranial implantation of glioblastoma 101/8 to rats. The survival times of all doxorubicin containing preparations, including a doxorubicin solution, increased the survival times significantly compared to untreated tumour-bearing rats. The most pronounced increase in survival was obtained with the poly(n-butyl cyanoacrylate) doxorubicin-loaded nanoparticles coated with polysorbate 80 and 35% of these animals survived for over 180 days (termination of the experiments). The other nanoparticle preparations yielded lower survival times. Poly(n-butyl cyanoacrylate) doxorubicin-loaded nanoparticles coated with polysorbate 80-coated proved to be very efficient against glioblastoma 101/8. The data suggest that the interaction of nanoparticles with the blood after injection as well as the enhanced permeability and retention effect (EPR effect) contributed differently to the anti-tumoural efficacy depending on nanoparticle formulation and surface properties.
    Keywords: Nanoparticles ; Glioblastomas ; Brain Tumours ; Rats ; Poly(N-Butyl Cyanoacrylate) ; Poly(Iso-Butyl Cyanoacrylate) ; Doxorubicin ; Polysorbate 80 ; Poloxamine 908 ; Poloxamer 188 ; Medicine ; Pharmacy, Therapeutics, & Pharmacology
    ISSN: 0265-2048
    E-ISSN: 1464-5246
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Journal of Drug Targeting, 01 January 2006, Vol.14(2), pp.97-105
    Description: It was recently shown that doxorubicin (DOX) bound to polysorbate-coated nanoparticles (NP) crossed the intact blood-brain barrier (BBB), and thus reached therapeutic concentrations in the brain. Here, we investigated the biodistribution in the brain and in the body of poly(butyl-2-cyano[3- 14 C]acrylate) NP ([ 14 C]-PBCA NP), polysorbate 80 (PS 80)-coated [ 14 C]-PBCA NP, DOX-loaded [ 14 C]-PBCA NP in glioblastoma 101/8-bearing rats after i.v. injection. The biodistribution profiles and brain concentrations of radiolabeled NP were determined by radioactivity counting after i.v. administration in rats. Changes in BBB permeability after tumour inoculation were assessed by i.v. injection of Evans Blue solution. The accumulation of NP in the tumour site and in the contralateral hemisphere in glioblastoma bearing-rats probably was augmented by the enhanced permeability and retention effect (EPR effect) that may have been becoming instrumental due to the impaired BBB on the NP delivery into the brain. The uptake of the NP by the organs of the reticuloendothelial system (RES) was reduced after PS 80-coating, but the addition of DOX increased again the concentration of NP in the RES.
    Keywords: Blood-Brain Barrier ; Glioblastoma ; Nanoparticles ; Doxorubicin ; Polysorbate 80 ; Pharmacy, Therapeutics, & Pharmacology
    ISSN: 1061-186X
    E-ISSN: 1029-2330
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages