Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Article  (40)
  • Rna
  • OneFile (GALE)  (40)
Type of Medium
  • Article  (40)
Language
Year
  • 1
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 25 August 2015, Vol.112(34), pp.E4772-81
    Description: Horizontal gene transfer via plasmid conjugation is a major driving force in microbial evolution but constitutes a complex process that requires synchronization with the physiological state of the host bacteria. Although several host transcription factors are known to regulate plasmid-borne transfer genes, RNA-based regulatory circuits for host-plasmid communication remain unknown. We describe a posttranscriptional mechanism whereby the Hfq-dependent small RNA, RprA, inhibits transfer of pSLT, the virulence plasmid of Salmonella enterica. RprA employs two separate seed-pairing domains to activate the mRNAs of both the sigma-factor σ(S) and the RicI protein, a previously uncharacterized membrane protein here shown to inhibit conjugation. Transcription of ricI requires σ(S) and, together, RprA and σ(S) orchestrate a coherent feedforward loop with AND-gate logic to tightly control the activation of RicI synthesis. RicI interacts with the conjugation apparatus protein TraV and limits plasmid transfer under membrane-damaging conditions. To our knowledge, this study reports the first small RNA-controlled feedforward loop relying on posttranscriptional activation of two independent targets and an unexpected role of the conserved RprA small RNA in controlling extrachromosomal DNA transfer.
    Keywords: Hfq ; Rpra ; Feedforward Control ; Plasmid Conjugation ; Srna ; Chromosomes, Bacterial ; DNA, Bacterial -- Genetics ; RNA, Bacterial -- Genetics ; Salmonella -- Genetics
    ISSN: 00278424
    E-ISSN: 1091-6490
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature, 2011, Vol.471(7340), p.602
    Description: CRISPR/Cas systems constitute a widespread class of immunity systems that protect bacteria and archaea against phages and plasmids, and commonly use repeat/spacer-derived short crRNAs to silence foreign nucleic acids in a sequence-specific manner. Although the maturation of crRNAs represents a key event in CRISPR activation, the responsible endoribonucleases (CasE, Cas6, Csy4) are missing in many CRISPR/Cas subtypes. Here, differential RNA sequencing of the human pathogen Streptococcus pyogenes uncovered tracrRNA, a trans -encoded small RNA with 24 nucleotide complementarity to the repeat regions of crRNA precursor transcripts. We show that tracrRNA directs the maturation of crRNAs by the activities of the widely conserved endogenous RNase III and the CRISPR-associated Csn1 protein; all these components are essential to protect S. pyogenes against prophage-derived DNA. Our study reveals a novel pathway of small guide RNA maturation and the first example of a host factor (RNase III) required for bacterial RNA-mediated immunity against invaders.
    Keywords: Article;
    ISSN: 0028-0836
    E-ISSN: 14764687
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Molecular Microbiology, April 2012, Vol.84(1), pp.1-5
    Description: The transcription factor CsgD governing the production of curli fimbriae and cellulose is a key player in the complex regulatory circuit that decides whether form biofilms. The gene itself is tightly controlled at the level of transcription by a large array of DNA‐binding proteins, but what happens after transcription is less understood. In this issue of , Jørgensen (2012), Mika (2012) and Thomason (2012) report on small RNAs (McaS, RprA and GcvB) that together with the RNA‐chaperone Hfq regulate the mRNAs of and other biofilm genes, and illustrate the burgeoning concept that the 5′ region of bacterial mRNA serves as a hub for sRNA‐mediated signal integration at the post‐transcriptional level.
    Keywords: Transcription (Genetics) ; Proteins ; Messenger Rna ; Genes ; Cellulose;
    ISSN: 0950-382X
    E-ISSN: 1365-2958
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Proceedings of the National Academy of Sciences of the United States of America, 2012, Vol.109(12), pp.4621-4626
    Description: The conserved RNA-binding protein Hfq and its associated small regulatory RNAs (sRNAs) are increasingly recognized as the players of a large network of posttranscriptional control of gene expression in Gram-negative bacteria. The role of Hfq in this network is to facilitate base pairing between sRNAs and their trans-encoded target mRNAs. Although the number of known sRNA–mRNA interactions has grown steadily, cellular factors that influence Hfq, the mediator of these interactions, have remained unknown. We report that RelA, a protein long known as the central regulator of the bacterial-stringent response, acts on Hfq and thereby affects the physiological activity of RyhB sRNA as a regulator of iron homeostasis. RyhB requires RelA in vivo to arrest growth during iron depletion and to down-regulate a subset of its target mRNAs (fdoG, nuoA, and sodA), whereas the sodB and sdhC targets are barely affected by RelA. In vitro studies with recombinant proteins show that RelA enhances multimerization of Hfq monomers and stimulates Hfq binding of RyhB and other sRNAs. Hfq from polysomes extracted from wild-type cells binds RyhB in vitro, whereas Hfq from polysomes of a relA mutant strain shows no binding. We propose that, by increasing the level of the hexameric form of Hfq, RelA enables binding of RNAs whose affinity for Hfq is low. Our results suggest that, under specific conditions and/or environments, Hfq concentrations are limiting for RNA binding, which thereby provides an opportunity for cellular proteins such as RelA to impact sRNA-mediated responses by modulating the activity of Hfq. ; p. 4621-4626.
    Keywords: Polyribosomes ; In Vitro Studies ; Messenger Rna ; Gram-Negative Bacteria ; Gene Expression ; Recombinant Proteins
    ISSN: 0027-8424
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: Cell, 11 April 2013, Vol.153(2), pp.426-437
    Description: Glucose homeostasis is strictly controlled in all domains of life. Bacteria that are unable to balance intracellular sugar levels and deal with potentially toxic phosphosugars cease growth and risk being outcompeted. Here, we identify the conserved haloacid dehalogenase (HAD)-like enzyme YigL as the previously hypothesized phosphatase for detoxification of phosphosugars and reveal that its synthesis is activated by an Hfq-dependent small RNA in . We show that the glucose-6-P-responsive small RNA SgrS activates YigL synthesis in a translation-independent fashion by the selective stabilization of a decay intermediate of the dicistronic messenger RNA (mRNA). Intriguingly, the major endoribonuclease RNase E, previously known to function together with small RNAs to degrade mRNA targets, is also essential for this process of mRNA activation. The exploitation of and targeted interference with regular RNA turnover described here may constitute a general route for small RNAs to rapidly activate both coding and noncoding genes. ► The bacterial small RNA SgrS posttranscriptionally activates the synthesis of YigL ► YigL is the previously hypothesized phosphatase that prevents phosphosugar toxicity ► SgrS activates yigL by a translation-independent mRNA-stabilization mechanism ► SgrS stabilizes an intermediate in the yigL mRNA decay pathway YigL, a long-sought bacterial phosphatase, regulates glucose-6-phosphate levels. A small regulatory RNA upregulates YigL synthesis by base pairing with the coding sequence of the preceding gene to interfere with endonucleolytic yigL mRNA decay.
    Keywords: Biology
    ISSN: 0092-8674
    E-ISSN: 1097-4172
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Molecular Microbiology, September 2009, Vol.73(5), pp.737-741
    Description: Small regulatory RNAs (sRNAs) are well known to command bacterial protein synthesis by modulating the translation and decay of target mRNAs. Most sRNAs are specifically regulated by a cognate transcription factor under certain growth or stress conditions. Investigations of the conserved Hfq‐dependent MicM sRNA in (article by Poul Valentin‐Hansen and colleagues in this issue of ) and in have unravelled a novel type of gene regulation in which the chitobiose operon mRNA acts as an RNA trap to degrade the constitutively expressed MicM sRNA, thereby alleviating MicM‐mediated repression of the synthesis of the YbfM porin that is required for chitosugar uptake. The results suggest that ‘target’ mRNAs might be both prey and also predators of sRNAs.
    Keywords: Protein Synthesis ; Messenger Rna;
    ISSN: 0950-382X
    E-ISSN: 1365-2958
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Nature Reviews Microbiology, 2011, Vol.9(8), p.578
    Description: Hfq is an RNA-binding protein that is common to diverse bacterial lineages and has key roles in the control of gene expression. By facilitating the pairing of small RNAs with their target mRNAs, Hfq affects the translation and turnover rates of specific transcripts and contributes to complex post-transcriptional networks. These functions of Hfq can be attributed to its ring-like oligomeric architecture, which presents two non-equivalent binding surfaces that are capable of multiple interactions with RNA molecules. Distant homologues of Hfq occur in archaea and eukaryotes, reflecting an ancient origin for the protein family and hinting at shared functions. In this Review, we describe the salient structural and functional features of Hfq and discuss possible mechanisms by which this protein can promote RNA interactions to catalyse specific and rapid regulatory responses in vivo.
    Keywords: Biology;
    ISSN: 1740-1526
    E-ISSN: 17401534
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Molecular Microbiology, January 2009, Vol.71(1), pp.1-11
    Description: species are enterobacterial pathogens that have been exceptionally well investigated with respect to virulence mechanisms, microbial pathogenesis, genome evolution and many fundamental pathways of gene expression and metabolism. While these studies have traditionally focused on protein functions, has also become a model organism for RNA‐mediated regulation. The present review is dedicated to the non‐coding RNA world of : it covers small RNAs (sRNAs) that act as post‐transcriptional regulators of gene expression, novel Salmonella ‐regulatory RNA elements that sense metabolite and metal ion concentrations (or temperature), and globally acting RNA‐binding proteins such as CsrA or Hfq (inactivation of which cause drastic phenotypes and virulence defects). Owing to mosaic genome structure, some of the sRNAs are widely conserved in bacteria whereas others are very specific to species. Intriguingly, sRNAs of either type (CsrB/C, InvR, SgrS) facilitate cross‐talk between the core genome and its laterally acquired virulence regions. Work in also identified physiological functions (and mechanisms thereof) of RNA that had remained unknown in , and pioneered the use of high‐throughput sequencing technology to identify the sRNA and mRNA targets of bacterial RNA‐binding proteins.
    Keywords: Metabolites ; Proteins ; Messenger Rna ; Salmonella ; Gene Expression;
    ISSN: 0950-382X
    E-ISSN: 1365-2958
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Molecular Cell, 10 October 2013, Vol.52(1), pp.4-7
    Description: Three papers in this issue of report on the structure and functional activity of type III CRISPR-Cas effector complexes, revealing novel and conserved features of the ribonucleoprotein particles that underlie prokaryotic genome defense. The new structures suggest that type I and type III complexes follow the same architectural principles and are most likely descendants of a common ancestor, the differences in RNA and protein sequences and structure of individual components notwithstanding.
    Keywords: Biology
    ISSN: 1097-2765
    E-ISSN: 1097-4164
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Genes & development, 15 May 2013, Vol.27(10), pp.1073-8
    Description: The abundant RNA-binding proteins CsrA and Hfq each impact bacterial physiology by working in conjunction with small RNAs to control large post-transcriptional regulons. The small RNAs involved were considered mechanistically distinct, regulating mRNAs either directly through Hfq-mediated base-pairing or indirectly by sequestering the global translational repressor CsrA. In this issue of Genes & Development, Jørgensen and colleagues (pp. 1132-1145) blur these distinctions with a dual-mechanism small RNA that acts through both Hfq and CsrA to regulate the formation of bacterial biofilms.
    Keywords: Csra ; Csrb ; Hfq ; Pga ; C-Di-Gmp ; Gene Expression Regulation, Bacterial ; Biofilms -- Growth & Development ; Escherichia Coli -- Genetics ; RNA, Bacterial -- Genetics
    ISSN: 08909369
    E-ISSN: 1549-5477
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages