Kooperativer Bibliotheksverbund

Berlin Brandenburg

and
and

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Silver
Type of Medium
Language
Year
  • 1
    Language: English
    In: Science of the Total Environment, 01 December 2015, Vol.535, pp.35-44
    Description: Silver nanoparticles (Ag NPs) could be found in aquatic systems in the near future. Although the interplay between aggregate formation and disaggregation is an important factor for mobility, bioavailability and toxicity of Ag NPs in surface waters, the factors controlling disaggregation of Ag NP homoaggregates are still unknown. In this study, we investigated the reversibility of homoaggregation of citrate coated Ag NPs in a Rhine River water matrix. We characterized the disaggregation of Ag NP homoaggregates by ionic strength reduction and addition of Suwannee River humic acid (SRHA) in the presence of strong and weak shear forces. In order to understand the disaggregation processes, we also studied the nature of homoaggregates and their formation dynamics under the influence of SRHA, Ca concentration and nanoparticle concentration. Even in the presence of SRHA and at low particle concentrations (10 μg L ), aggregates formed rapidly in filtered Rhine water. The critical coagulation concentration (CCC) of Ca in reconstituted Rhine water was 1.5 mmol L and was shifted towards higher values in the presence of SRHA. Analysis of the attachment efficiency as a function of Ca concentration showed that SRHA induces electrosteric stabilization at low Ca concentrations and cation-bridging flocculation at high Ca concentrations. Shear forces in the form of mechanical shaking or ultrasound were necessary for breaking the aggregates. Without ultrasound, SRHA also induced disaggregation, but it required several days to reach a stable size of dense aggregates still larger than the primary particles. Citrate stabilized Ag NPs may be in the form of reaction limited aggregates in aquatic systems similar to the Rhine River. The size and the structure of these aggregates will be dynamic and be determined by the solution conditions. Seasonal variations in the chemical composition of natural waters can result in a sedimentation-release cycle of engineered nanoparticles.
    Keywords: Coagulation Kinetics ; Aggregation ; Disaggregation ; Dls ; Natural Organic Matter ; Icp-MS ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Language: English
    In: Science of the Total Environment, 01 December 2015, Vol.535, pp.3-19
    Description: Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering fate and effect of EINP in specific ecosystems (e.g. soil, lake, or riverine systems).
    Keywords: Transport ; Aggregation ; Analytics ; Environment ; Aging ; Ecotoxicology ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Language: English
    In: Science of the Total Environment, 01 December 2015, Vol.535, pp.54-60
    Description: Nanoparticles enter soils through various pathways. In the soil, they undergo various interactions with the solution and the solid phase. We tested the following hypotheses using batch experiments: i) the colloidal stability of Ag NP increases through sorption of soil-borne dissolved organic matter (DOM) and thus inhibits aggregation; ii) the presence of DOM suppresses Ag oxidation; iii) the surface charge of Ag NP governs sorption onto soil particles. Citrate-stabilized and bare Ag NPs were equilibrated with (colloid-free) soil solution extracted from a floodplain soil for 24 h. Nanoparticles were removed through centrifugation. Concentrations of free Ag ions and DOC, the specific UV absorbance at a wavelength of 254 nm, and the absorption ratio α /α were determined in the supernatant. Nanoparticle aggregation was studied using time-resolved dynamic light scattering (DLS) measurement following the addition of soil solution and 1.5 mM Ca solution. To study the effect of surface charge on the adsorption of Ag NP onto soil particles, bare and citrate-stabilized Ag NP, differing in the zeta potential, were equilibrated with silt at a solid-to-solution ratio of 1:10 and an initial Ag concentration range of 30 to 320 μg/L. Results showed that bare Ag NPs sorb organic matter, with short-chained organic matter being preferentially adsorbed over long-chained, aromatic organic matter. Stabilizing effects of organic matter only come into play at higher Ag NP concentrations. Soil solution inhibits the release of Ag ions, presumably due to organic matter coatings. Sorption to silt particles was very similar for the two particle types, suggesting that the surface charge does not control Ag NP sorption. Besides, sorption was much lower than in comparable studies with sand and glass surfaces.
    Keywords: Isoelectric Point ; Cation Valency ; Initial Nanoparticle Concentration ; Exchangeability of Sorbed Ag Ions ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Language: English
    In: Science of the Total Environment, 01 December 2015, Vol.535, pp.113-121
    Description: Chemical factors and physical constraints lead to coupled effects during particle transport in unsaturated porous media. Studies on unsaturated transport as typical for soils are currently scarce. In unsaturated porous media, particle mobility is determined by the existence of an air–water interface in addition to a solid–water interface. To this end, we measured breakthrough curves and retention profiles of citrate-coated Ag nanoparticles in unsaturated sand at two pH values (5 and 9) and three different flow rates corresponding to different water contents with 1 mM KNO as background electrolyte. The classical DLVO theory suggests unfavorable deposition conditions at the air–water and solid–water interfaces. The breakthrough curves indicate modification in curve shapes and retardation of nanoparticles compared to inert solute. Retention profiles show sensitivity to flow rate and pH and this ranged from almost no retention for the highest flow rate at pH = 9 to almost complete retention for the lowest flow rate at pH = 5. Modeling of the breakthrough curves, thus, required coupling two parallel processes: a kinetically controlled attachment process far from equilibrium, responsible for the shape modification, and an equilibrium sorption, responsible for particle retardation. The non-equilibrium process and equilibrium sorption are suggested to relate to the solid–water and air–water interfaces, respectively. This is supported by the DLVO model extended for hydrophobic interactions which suggests reversible attachment, characterized by a secondary minimum (depth 3–5 kT) and a repulsive barrier at the air–water interface. In contrast, the solid–water interface is characterized by a significant repulsive barrier and the absence of a secondary minimum suggesting kinetically controlled and non-equilibrium interaction. This study provides new insights into particle transport in unsaturated porous media and offers a model concept representing the relevant processes.
    Keywords: Air–Water Interface ; Solid–Water Interface ; Engineered Nanoparticle ; Extended Dlvo Theory ; Unsaturated Flow ; Pore Structure ; Environmental Sciences ; Biology ; Public Health
    ISSN: 0048-9697
    E-ISSN: 1879-1026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Language: English
    In: PLoS ONE, 01 January 2018, Vol.13(6), p.e0199132
    Description: The application of engineered silver nanoparticles (AgNPs) in a considerable amount of registered commercial products inevitably will result in the continuous release of AgNPs into the natural aquatic environment. Therefore, native biofilms,...
    Keywords: Sciences (General)
    E-ISSN: 1932-6203
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Language: English
    In: Environmental science & technology, 16 January 2018, Vol.52(2), pp.436-445
    Description: Citrate (Cit) and polyethylenimine (BPEI)-coated silver nanoparticles (AgNPs) were used to understand how the type of capping agents and surface charge affect their colloidal stability, dissolution, and ecotoxicity in the absence/presence of Pony Lake Fulvic Acid (PLFA). In the presence of PLFA, Cit-AgNPs were stabilized, while BPEI-AgNPs were aggregated. The aggregation of BPEI-AgNPs decreased with the time, and their stabilizing effect increased at high PLFA concentration. The dissolution also differed between both AgNPs and was influenced by the PLFA concentration. Generally, BPEI-AgNPs showed a lower amount of dissolved Ag than Cit-AgNPs. The dissolved Ag concentration decreased for both AgNPs at low PLFA concentration (5 mg/L). In contrast, the extent of nanoparticle dissolution increased at high PLFA concentration (30 mg/L) but only for BPEI-AgNPs. In the absence of PLFA, the ecotoxicity of Cit-AgNPs to Daphnia magna was higher than that of BPEI-AgNPs. However, the ecotoxicity of AgNPs in the presence of PLFA was up to 70% lower than in their absence. We demonstrated that the differences in colloidal stability, dissolution, and ecotoxicity may be attributed to the different capping agents, surface charge, and concentration of natural organic matter (NOM) as well as to the formation of dissolved Ag complexes with NOM.
    Keywords: Daphnia ; Metal Nanoparticles
    ISSN: 0013936X
    E-ISSN: 1520-5851
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Language: English
    In: Environmental science & technology, 21 May 2013, Vol.47(10), pp.5083-91
    Description: The fate of engineered nanoparticles in environmental systems is controlled by changes in colloidal stability and their interaction with different environmental surfaces. Little is known about nanoparticle-surface interactions on the basis of sorption isotherms under quasi-equilibrium conditions, although sorption isotherms are a valuable means of studying sorbate-sorbent interactions. We tested the extent to which the sorption of engineered silver nanoparticles (nAg) from stable and unstable suspensions to model (sorbents with specific chemical functional groups) and environmental (plant leaves and sand) surfaces can be described by classical sorption isotherms. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) qualitative and quantitative analyses were also used to assess the morphology and nanomechanical parameters of the covered surfaces. The sorption of nAg from stable suspensions was nonlinear and best described by the Langmuir isotherm. Langmuir coefficients varied with sorbent surface chemistry. For nAg sorption from an unstable suspension, the sorption isotherms did not follow any classical sorption models, suggesting interplay between aggregation and sorption. The validity of the Langmuir isotherm suggests monolayer sorption, which can be explained by the blocking effect due to electrostatic repulsion of individual nanoparticles. In unstable suspensions, aggregates are instead formed in suspension and then sorbed, formed on the surface itself, or formed in both ways.
    Keywords: Models, Chemical ; Metal Nanoparticles -- Chemistry ; Silver -- Chemistry
    ISSN: 0013936X
    E-ISSN: 1520-5851
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Language: English
    In: Environmental Science and Pollution Research, 2016, Vol.23(23), pp.24277-24288
    Description: Bacterial biofilms are most likely confronted with silver nanoparticles (Ag NPs) as a pollutant stressor in aquatic systems. In this study, biofilms of Aquabacterium citratiphilum were exposed for 20 h to 30 and 70 nm citrate stabilized Ag NPs in low-dose concentrations ranging from 600 to 2400 μg l −1 , and the Ag NP-mediated effects on descriptive, structural, and functional biofilm characteristics, including viability, protein content, architecture, and mechanical stability, were investigated. Viability, based on the bacterial cell membrane integrity of A. citratiphilum , as determined by epifluorescence microscopy, remained unaffected after Ag NP exposure. Moreover, in contrast to information in the current literature, protein contents of cells and extracellular polymeric substances (EPS) and biofilm architecture, including dry mass, thickness, and density, were not significantly impacted by exposure to Ag NPs. However, the biofilms themselves served as effective sinks for Ag NPs, exhibiting enrichment factors from 5 to 8. Biofilms showed a greater capacity to accumulate 30 nm sized Ag NPs than 70 nm Ag NPs. Furthermore, Ag NPs significantly threatened the mechanical stability of biofilms, as determined by a newly developed assay. For 30 nm Ag NPs, the mechanical stability of biofilms decreased as the Ag NP concentrations applied to them increased. In contrast, 70 nm Ag NPs produced a similar decrease in mechanical stability for each applied concentration. Overall, this finding demonstrates that exposure to Ag NPs triggers remarkable changes in biofilm adhesion and/or cohesiveness. Because of biofilm-mediated ecological services, this response raises environmental concerns regarding Ag NP release into freshwater systems, even in sublethal concentrations.
    Keywords: Aquabacterium citratiphilum ; biofilm ; Silver nanoparticles ; Toxicity ; Mechanical stability ; Nanoparticle enrichment
    ISSN: 0944-1344
    E-ISSN: 1614-7499
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Language: English
    In: Ecotoxicology and Environmental Safety, January 2015, Vol.111, pp.263-270
    Description: Studies assessing the acute and chronic toxicity of silver nanoparticle (nAg) materials rarely consider potential implications of environmental variables. In order to increase our understanding in this respect, we investigated the acute and chronic effects of various nAg materials on . Thereby, different nanoparticle size classes with a citrate coating (20-, ~30-, 60- as well as 100-nm nAg) and one size class without any coating (140 nm) were tested, considering at the same time two pH levels (6.5 and 8.0) as well as the absence or presence of dissolved organic matter (DOM; 〈0.1 or 8.0 mg total organic carbon/L). Results display a reduced toxicity of nAg in media with higher pH and the presence of DOM as well as increasing initial particle size, if similarly coated. This suggests that the associated fraction of Ag species 〈2 nm (including Ag ) is driving the nAg toxicity. This hypothesis is supported by normalizing the 48-h EC -values to Ag species 〈2 nm, which displays comparable toxicity estimates for the majority of the nAg materials assessed. It may therefore be concluded that a combination of both the particle characteristics, i.e. its initial size and surface coating, and environmental factors trigger the toxicity of ion-releasing nanoparticles.
    Keywords: Nanomaterial ; Silver ; Acute Toxicity ; Crustacean ; Environmental Conditions ; Ecology ; Public Health
    ISSN: 0147-6513
    E-ISSN: 1090-2414
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Language: English
    In: Journal of Contaminant Hydrology, December 2016, Vol.195, pp.31-39
    Description: Engineered nanoparticles released into soils may be coated with humic substances, potentially modifying their surface properties. Due to their amphiphilic nature, humic coating is expected to affect interaction of nanoparticle at the air-water interface. In this study, we explored the roles of the air-water interface and solid-water interface as potential sites for nanoparticle attachment and the importance of hydrophobic interactions for nanoparticle attachment at the air-water interface. By exposing Ag nanoparticles to soil solution extracted from the upper soil horizon of a floodplain soil, the mobility of the resulting “soil-aged” Ag nanoparticles was investigated and compared with the mobility of citrate-coated Ag nanoparticles as investigated in an earlier study. The mobility was determined as a function of hydrologic conditions and solution chemistry using column breakthrough curves and numerical modeling. Specifically, we compared the mobility of both types of nanoparticles for different unsaturated flow conditions and for pH = 5 and pH = 9. The soil-aged Ag NP were less mobile at pH = 5 than at pH = 9 due to lower electrostatic repulsion at pH = 5 for both types of interfaces. Moreover, the physical flow field at different water contents modified the impact of chemical forces at the solid-water interface. An extended Derjaguin-Landau-Verwey-Overbeek (eDLVO) model did not provide satisfactory explanation of the observed transport phenomena unlike for the citrate-coated case. For instance, the eDLVO model assuming sphere-plate geometry predicts a high energy barrier (〉 90 ) for the solid-water interface, indicating that nanoparticle attachment is less likely. Furthermore, retardation through reversible sorption at the air-water interface was probably less relevant for soil-aged nanoparticles than for citrate-coated nanoparticles. An additional cation bridging mechanism and straining within the flow field may have enhanced nanoparticle retention at the solid-water interface. The results indicate that the mobility of engineered Ag nanoparticles is sensitive to solution chemistry, especially pH and the concentration of multivalent cations, and to the unsaturated flow conditions influencing particle interaction at biogeochemical interfaces.
    Keywords: Unsaturated Transport ; Water Dynamics ; Cation Bridging ; Amphiphilic ; Edlvo ; Engineering ; Environmental Sciences ; Geography
    ISSN: 0169-7722
    E-ISSN: 1873-6009
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages